Physics, asked by katochsejal, 10 months ago

y= (x^2 + 1 ) (x+2) then differentiate with respect to x
that is dy / dx​

Answers

Answered by BrainlyPopularman
66

ANSWER :–

▪︎  { \boxed { \bold{ \dfrac{dy}{dx} = 3 {x}^{2}  + 4x + 1 }}}  \\

EXPLANATION :

GIVEN :

▪︎ A function y = (x² + 1)(x + 2)

TO FIND :

 { \bold{  \dfrac{dy}{dx} = ? }}

SOLUTION :

▪︎ Function –

 \\ \implies \: { \bold{y = ( {x}^{2}  + 1)(x + 2)}} \\

▪︎ Now Differentiate with respect to 'x'

  \\ \implies \: { \bold{ \dfrac{dy}{dx}  = ( {x}^{2}  + 1).(1) + (2x)(x + 2)}} \\

  \\  \implies{ \bold{ \dfrac{dy}{dx}   =  {x}^{2}  + 1 + 2 {x}^{2} + 4x }} \\

  \\ \implies{ \boxed { \bold{ \dfrac{dy}{dx} = 3 {x}^{2}  + 4x + 1 }}}  \\

USED FORMULA :

 \\ { \bold{ (1) \dfrac{d(u.v)}{dx} =  u \dfrac{dv}{dx}  + v \dfrac{du}{dx}  }} \\

 \\ { \bold{ (2) \dfrac{d( {x}^{n} )}{dx} = \: n {x}^{n - 1} }} \\

Answered by saranyadevi973
1

Answer:

dy/dx=(x^2+1)+(x+2)2x

Explanation:

uv=uv'+vu'

u=(x^2+1)

u'=2x

v=(x+2)

v'=1

dy/dx=uv'+vu'

=(x^2+1)(1)+(x+2)(2x)

=(x^2+2)+(x+2)2x

Similar questions