Physics, asked by studyingbuddy, 7 months ago

y=√x(x^2+7) find Dy/dx

Answers

Answered by khushiagarwal27611
3

Explanation:

Differentiating w.r.t x,

dy/dx=√x.d/dx(x^2+7)+(x^2+7).d/dx(√x)

dy/dx=√x.2x+1/2√x.x^2+1/2√x.7

Answered by Mihir1001
2

\huge{\underline{\bf\red{Questi {\mathbb{O}} n} :}}

  • Find  \sf \dfrac{dy}{dx}

\huge{\underline{\: \bf\green{Answ {\mathbb{E}} r}\ \: :}}

 \boxed{\frac{5x { \big( \sqrt{x}  \big)}^{3} + 7 \sqrt{x}  }{2x} }

\Large{\underline{\bf\purple{Giv {\mathbb{E}} n}\ :}}

  •  \sf y =  \sqrt{x}  \big( {x}^{2}  + 7 \big)

\huge{\underline{\bf\blue{Soluti {\mathbb{O}} n}\ :}}

\begin{aligned} & \quad \ \sf  \frac{dy}{dx}  \\  \\  & =  \sf \frac{d}{dx} \bigg\{  \sqrt{x}  \big(  {x}^{2}  + 7\big) \bigg\}  \\  \\  & =  \sqrt{x} \frac{ \sf d}{{ \sf{d}}x}( {x}^{2}  + 7) + ( {x}^{2} + 7) \frac{ \sf d}{{ \sf{d}}x}  ( \sqrt{x} ) \\  \\    & =  \sqrt{x} \{ 2 {x}^{2 - 1} + 0 \}  + ( {x}^{2}  + 7) \bigg( \frac{1}{2} {x}^{ \frac{1}{2}  - 1}   \bigg)  \\  \\ & =  {x}^{ \frac{1}{2} }(2x) + ( {x}^{2} + 7) \bigg( \frac{1}{2} {x}^{ -  \frac{1}{2} }  \bigg) \\  \\  & = 2 {x}^{ \frac{3}{2} } +  \frac{1}{2} {x}^{ \frac{3}{2} }   +  \frac{7}{2} {x}^{ -  \frac{1}{2} }  \\  \\   & = 2 {( \sqrt{x} )}^{3} +  \frac{1}{2 } {( \sqrt{x}) }^{3}   +  \frac{7}{2 \sqrt{x} } \\  \\   & =  \frac{5}{2} {( \sqrt{x} )}^{3}  +  \frac{7 \sqrt{x} }{2x} \\  \\    & =  \frac{5x { \big( \sqrt{x}  \big)}^{3} + 7 \sqrt{x}  }{2x}  & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

Differentiation formulae Used :--

 \boxed{ \frac{ \sf d}{{\sf{d}}x} {(x)}^{n} = n {x}^{(n - 1)}   }

 \boxed{ \frac{ \sf d}{{ \sf{d}}x}(constant) = 0 }

 \boxed{ \frac{ \sf d}{{ \sf{d}}x}(u + v) = \frac{ \sf d}{{ \sf{d}}x}(u) + \frac{ \sf d}{{ \sf{d}}x}(v) }

 \boxed{\frac{ \sf d}{{ \sf{d}}x}(uv) = u\frac{ \sf d}{{ \sf{d}}x}(v) + v\frac{ \sf d}{{ \sf{d}}x}(u)}

\purple{\rule{7.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions