Math, asked by gururishi06979, 19 days ago

y^x+x^y+x^x=a^n.finddy/dx​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm \: {y}^{x}   +  {x}^{y}  +  {x}^{x}  =  {a}^{n}  \\

Let assume that,

\rm \: u + v + w  =  {a}^{n}  \\

where,

\rm \: u =  {y}^{x}  \\

\rm \: v =  {x}^{y}  \\

\rm \: w =  {x}^{x}  \\

Now, On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx} (u + v + w) = \dfrac{d}{dx} {a}^{n}  \\

\rm \: \dfrac{d}{dx}u + \dfrac{d}{dx}v + \dfrac{dy}{dx}w = 0 \\

\rm\implies \:\dfrac{du}{dx} + \dfrac{dv}{dx} + \dfrac{dw}{dx} = 0 -  -  -  - (1) \\

Now, Consider

\rm \: u =  {y}^{x}  \\

On taking log on both sides, we get

\rm \: logu =  log{y}^{x}  \\

\rm \: logu =  xlogy \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logu =  \dfrac{d}{dx}xlogy \\

\rm \: \dfrac{1}{u}\dfrac{du}{dx} = x\dfrac{d}{dx}logy + logy\dfrac{d}{dx}x \\

\rm \: \dfrac{1}{u}\dfrac{du}{dx} = x\dfrac{1}{y}\dfrac{dy}{dx}+ logy \times 1 \\

\rm \: \dfrac{du}{dx} = u\bigg(\dfrac{x}{y}\dfrac{dy}{dx}+ logy\bigg) \\

\rm\implies \:\rm \: \dfrac{du}{dx} =  {y}^{x} \bigg(\dfrac{x}{y}\dfrac{dy}{dx}+ logy\bigg) -  -  -  - (2) \\

Now, Consider

\rm \: v =  {x}^{y}  \\

On taking log on both sides, we get

\rm \: logv =  log{x}^{y}  \\

\rm \: logv =  y \: log{x} \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logv =  \dfrac{d}{dx} \: y \: log{x} \\

\rm \: \dfrac{1}{v}\dfrac{dv}{dx} = y\dfrac{d}{dx}logx + logx\dfrac{d}{dx}y \\

\rm \: \dfrac{dv}{dx} =v\bigg( y\dfrac{1}{x} + logx\dfrac{dy}{dx}\bigg)\\

\rm\implies \:\rm \: \dfrac{dv}{dx} = {x}^{y} \bigg( y\dfrac{1}{x} + logx\dfrac{dy}{dx}\bigg) -  -  -  - (3)\\

Now, Consider

\rm \: w =  {x}^{x}  \\

On taking log on both sides, we get

\rm \: logw =  log{x}^{x}  \\

\rm \: logw =  xlog{x}  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logw = \dfrac{d}{dx} xlog{x}  \\

\rm \: \dfrac{1}{w}\dfrac{dw}{dx} = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x \\

\rm \: \dfrac{dw}{dx} = w\bigg(x \times \dfrac{1}{x}  + logx \times 1 \bigg)  \\

\rm\implies \:\rm \: \dfrac{dw}{dx} =  {x}^{x} \bigg(1 + logx \bigg)  -  -  -  - (4) \\

So, on substituting the values from equation (2), (3) and (4) in equation (1), we get

\rm \: {y}^{x} \bigg(\dfrac{x}{y}\dfrac{dy}{dx}+ logy\bigg) + {x}^{y} \bigg( y\dfrac{1}{x} + logx\dfrac{dy}{dx}\bigg) +  {x}^{x}(1 + logx) = 0 \\

\rm \: x{y}^{x - 1}\dfrac{dy}{dx}+ {y}^{x}  logy +y {x}^{y - 1} +  {x}^{y} logx\dfrac{dy}{dx} +  {x}^{x}(1 + logx) = 0 \\

\rm \: x{y}^{x - 1}\dfrac{dy}{dx} + {x}^{y} logx\dfrac{dy}{dx} =  - \bigg({y}^{x}  logy +y {x}^{y - 1}  +  {x}^{x}(1 + logx)\bigg) \\

\rm \: \bigg(x{y}^{x - 1} + {x}^{y} logx\bigg)\dfrac{dy}{dx} =  - \bigg({y}^{x}  logy +y {x}^{y - 1}  +  {x}^{x}(1 + logx)\bigg) \\

\rm \: \dfrac{dy}{dx} =  \:  -  \:  \dfrac{\bigg({y}^{x}  logy +y {x}^{y - 1}  +  {x}^{x}(1 + logx)\bigg)}{\bigg(x{y}^{x - 1} + {x}^{y} logx\bigg)} \\

Hence,

 \\ \boxed{\sf{  \:\rm \: \dfrac{dy}{dx} =  \:  -  \:  \dfrac{\bigg({y}^{x}  logy +y {x}^{y - 1}  +  {x}^{x}(1 + logx)\bigg)}{\bigg(x{y}^{x - 1} + {x}^{y} logx\bigg)}}} \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \: \: \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \: }} \\

\boxed{\sf{  \:\dfrac{d}{dx}x \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\dfrac{d}{dx}k \:  =  \: 0 \: }} \\

\boxed{\sf{  \:\dfrac{d}{dx}uv \:  =  \: u \: \dfrac{d}{dx}v \:  +  \: v \: \dfrac{d}{dx}u \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions