Math, asked by ayushkasera7046, 8 months ago

y=x²/2x²+7x+6 and d²y/dx²=-A/(x+2)³+B/(2x+3)³ then find A and B​

Answers

Answered by saounksh
3

ANSWER

  • \boxed{A = 8, B = 36}

EXPLAINATION

It is given that

y =  \frac{ {x}^{2} }{2 {x}^{2}  + 7x + 6}

y =  \frac{ {x}^{2} +  \frac{7}{2}  x + 3 -  \frac{7}{2}x - 3 }{2 {x}^{2}  + 7x + 6}

y =  \frac{ \frac{1}{2}(2 {x}^{2} + 7x + 6) -  \frac{7}{2}x - 3 }{2 {x}^{2}  + 7x + 6}

y =  \frac{1}{2}  -  \frac{1}{2}.  \frac{7x + 6}{2 {x}^{2} + 7x + 6 }

y =   \frac{1}{2}  -  \frac{1}{2}. \frac{7x + 6 }{2 {x}^{2}  + 4x + 3x + 6}

y =   \frac{1}{2} -  \frac{1}{2} . \frac{ 7x + 6 }{2x(x + 2) + 3(x + 2)}

y =   \frac{1}{2}  -  \frac{1}{2}. \frac{ 7x + 6 }{(x + 2)(2x + 3)}

Put

\frac{ 7x + 6 }{(x + 2)(2x + 3)}  =  \frac{p}{x + 2}  +  \frac{q}{2x + 3}

7x + 6 = p(2x + 3) + q(x + 2)

7x + 6 = (2p + q)x + (3p + 2q)

This equation is true for all value of x, hence co-efficients must be equal

2p + q = 7 \:, \: 3p + 2q = 6

⇒p = 8 \:, \: q =  - 9

Therefore,

y =  \frac{1}{2}  -  \frac{1}{2} .( \frac{8}{ x+ 2}   -  \frac{9}{2x + 3} )

Differenting w.r.t x we get

 \frac{dy}{dx}  = 0 -  \frac{1}{2} .( \frac{ - 8}{ {(x + 2)}^{2} }  -  \frac{ - 9 \times 2}{ {(2x + 3)}^{2} })

 \frac{dy}{dx}  =  \frac{4}{ {(x + 2)}^{2} }  -  \frac{9}{ {(2x + 3)}^{2} }

Differenting w.r.t x we get

 \frac{ {d}^{2} y}{ {dx}^{2} } =  \frac{4.( - 2)}{ {(x + 2)}^{3} }   -  \frac{9.( - 2).2}{ {(2x + 3)}^{3} }

\frac{ {d}^{2} y}{ {dx}^{2} } =  \frac{ - 8}{ {(x + 2)}^{3} }    +   \frac{36}{ {(2x + 3)}^{3} }

Comparing with given expression of  \frac{ {d}^{2} y}{ {dx}^{2} }, we get

- A = - 8, B = 36

⇒ A = 8, B = 36

Similar questions