Math, asked by taresharvari, 9 months ago

y=xlogx/x+log x..differentiathe the following w. r. t. x

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{y=\dfrac{x\,log\,x}{x+log\,x}}

\underline{\textbf{To find:}}

\textsf{Derivate of}\;\mathsf{y=\dfrac{x\,log\,x}{x+log\,x}}

\underline{\textbf{Quotient rule:}}

\mathsf{\dfrac{d\left(\frac{u}{v}\right)}{dx}=\dfrac{v\,\dfrac{du}{dx}-u\,\dfrac{dv}{dx}}{v^2}}

\textsf{Consider}

\mathsf{y=\dfrac{x\,log\,x}{x+log\,x}}

\textsf{Differentiate with respect to "x"}

\mathsf{\dfrac{dy}{dx}=\dfrac{(x+log\,x)\left(x.\dfrac{1}{x}+log\,x.1\right)-(x\,log\,x)\left(1+\dfrac{1}{x}\right)}{(x+log\,x)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{(x+log\,x)(1+log\,x)-(x\,log\,x)\left(1+\dfrac{1}{x}\right)}{(x+log\,x)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{x+x\,logx+logx+(logx)^2-x\,logx-logx}{(x+log\,x)^2}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{x+(logx)^2}{(x+log\,x)^2}}}

Similar questions