Math, asked by djmanikpinnacle, 15 days ago

y = xlogy Show that xdy/dx = y^2/(y-x)

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \rm \:y = x. log(y)

Differentiating both sides w.r.t x, we get,

 \rm \: \frac{dy}{dx}  =  log(y) + x. \frac{1}{y} \frac{dy}{dx}    \\

 \rm \:  \implies\frac{dy}{dx}  =   \frac{y}{x}  + \frac{x}{y} \frac{dy}{dx}    \\

 \rm \:  \implies\frac{dy}{dx} -    \frac{x}{y} \frac{dy}{dx}   =   \frac{y}{x}     \\

 \rm \:   \implies  \bigg(1-    \frac{x}{y}  \bigg)\frac{dy}{dx}   =   \frac{y}{x}     \\

 \rm \:   \implies  \bigg(   \frac{y - x}{y}  \bigg)\frac{dy}{dx}   =   \frac{y}{x}     \\

 \rm \:   \implies \frac{dy}{dx}   =   \frac{y}{x} . \frac{y}{y - x}     \\

 \rm \:   \implies x\frac{dy}{dx}   =    \frac{ {y}^{2} }{y - x}     \\

Similar questions