Math, asked by khadkasonika58, 4 months ago

y+z=4 yz=3 find y³+z³=?

Answers

Answered by mathdude500
3

Answer:

Question

  • If y + z = 4 and yz = 3, find y³ + z³

Answer

Given:-

  • y + z = 4 and yz = 3

To find :-

  • y³ + z³

Identity used :-

\bf\implies \: {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

Solution :-

y + z = 4........(1) and yz = 3

Cubing (1) both sides

\bf\implies \: {(y + z)}^{3}  =  {4}^{3}

\bf\implies \: {y}^{3}  +  {z}^{3}  + 3yz(y + z) = 64

\bf\implies \: y³ + z³ + 3 \times 3 \times 4 = 64

\bf\implies \:y³ + z³ + 36 = 64

\bf\implies \:y³ + z³ = 64 - 36

\bf\implies \:y³ + z³ = 28

____________________________________________

Additional Information

Other useful identities :-

\bf\ \: {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

\bf \: {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

\bf \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

\bf \: {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

\bf \: {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)

\bf \: {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - yx +  {y}^{2} )

\bf \: {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )

Similar questions