yadi A+B=π/4prove that (cotA-1)(cotB-1)=2
Answers
Answered by
1
Answer:
Step-by-step explanation:
tan(A+B)=tan(pi/4)
=>(tanA+tanB)/(1-tanAtanB)=1
=>tanA+tanB=1-tanAtanB)
=>tanA+tanB+tanAtanB+1=2
=>tanA+tanAtanB+1+tanB=2
=>tanA(1+tanB)+(1+tanB)=2
=>(1+tanA)(1+tanB)=2
Again
cot(A+B)=cot(pi/4)
=>(cotAcotB-1)/(cotB+cotA)=1
=>cotAcotB-1=cotB+cotA
=>cotAcotB-cotB-cotA+1=1+1
=>cotB(cot A-1)-1(cotA-1)=2
=>(cot A-1)(cotB-1)=2
Answered by
1
Answer:
Step-by-step explanation:
A+B = π/4
//Now take Cot on both sides
Cot(A+B) = Cot (π/4) = Cot45°
//Formula: Cot(A+B) = (CotA.CotB - 1) / (CotA + CotB) & Cot45° = 1
(CotA.CotB - 1) / (CotA + CotB) = 1
CotA.CotB - 1 = Cot A + Cot B
CotA.CotB - CotA - CotB = 1
CotB(CotA - 1) - CotA = 1
//Add 1 on both sides
CotB(CotA-1) - CotA + 1 = 1+1
CotB(CotA-1) - (CotA-1) = 2
(CotA-1) (CotB-1) = 2
Similar questions