Math, asked by kindness9929, 1 year ago

यदि 15 cot A = 8 हो तो सिद्ध करे कि sinA=15/17 एवं SecA = 17/8

Answers

Answered by aaravshrivastwa
8

15 cot A = 8

Cot A = 8/15

b/p = 8k/15k

b = 8k

p = 15k

=> h = √p²+b²

=> h= √225k² + 64k²

=> h = √289k²

=> h = 17k

Now,

Sin A = p/h

Sin A = 15k/17k

Sin A = 15/17

Again,

Sec A = h/b

Sec A = 17k/8k

Sec A = 17/8

Proved....

Answered by ihrishi
1

Step-by-step explanation:

15 \: cot \: A = 8 \\  \implies \: cot \: A  =  \frac{8}{15}  \\ \implies \: tan \: A  =  \frac{15}{8}  \\ sec ^{2} A = 1 + tan^{2} A  = 1 +  ({ \frac{15}{8} })^{2}  \\  = 1 +  \frac{225}{64}  =  \frac{64 + 225}{64}  =  \frac{289}{64}  \\  \huge \fbox {sec  A  =  \frac{17}{8}}  \\  \implies \: cos  A  =  \frac{8}{17} \\ sin ^{2}   A = 1 - cos ^{2}   A  \\  = 1 - ( { \frac{8}{17} )}^{2}  = 1 -  \frac{64}{289} \\   =  \frac{289 - 64}{289}  =  \frac{225}{289}  \\  \huge \fbox {sin   A =  \frac{15}{17} }\\ \\\huge \fbox {Thus\: proved}

Similar questions