Math, asked by mehtamanjeet10, 5 months ago

यदि 7 sin A+24 cos A = 25, तब tan A का मान निकालिए।
राति
0​

Answers

Answered by gchandrareddy1222
0

Answer:

that's the answer ☺️ in the figures write

Attachments:
Answered by TheWonderWall
4

\large\sf\underline{Given:-}

  • \sf\:7 Sin A + 24 Cos A = 25

\large\sf\underline{To\:find:-}

\sf\:Value\:of\:tan A

\large\sf\underline{Solution :-}

\sf\:7 Sin A + 24 Cos A = 25

Dividing 25 on both sides :

\sf↦\:\frac{7 Sin A}{25} + \frac{24 Cos A}{25} = \frac{25}{25}

\sf↦\:\frac{7}{25} \times SinA+ \frac{24}{25} \times Cos A= 1

We know that,

\tt\red{↦\:Sin^{2} A + Cos^{2} A = 1}

\sf↦\:Sin A \times Sin A + Cos A \times Cos A = 1

\tt\purple{⟹\:Sin A= \frac{7}{25}}

\tt\purple{⟹\:Cos A = \frac{24}{25}}

So the value of Tan A would be :

\sf↦\:Tan A = \frac{Sin A}{Cos A }

\sf↦\:Tan A = \frac{7}{25} \div \frac{24}{25}

\sf↦\:Tan A = \frac{7}{25} \times  \frac{25}{24}

\sf↦\:Tan A = \frac{7 \times 25}{25 \times 24 }

\tt\purple{⟹\:Tan A = \frac{7 }{24 }}

  • Thnku :)
Similar questions