* यदि cote =
7/24
है तो
sin Ø.secØ/
1+ cos ec Ø.tanØ
का मान ज्ञात करें।
Answers
Answer:-
(Theta is taken as "A").
Given:
cot A = 7/24
We know that,
cot ∅ = Adjacent side/Opposite side
Hence,
Adjacent side/Opposite side = 7/24
Using Pythagoras Theorem,
→ (Hypotenuse)² = (Opposite side)² + ( Adjacent side)²
→ (Hypotenuse)² = (7)² + (24)²
→ Hypotenuse = √(49 + 576)
→ Hypotenuse = √625
→ Hypotenuse = 25
Hence,
sin A = Opposite side/Hypotenuse
→ sin A = 7/25
sec A = Hypotenuse/Adjacent side
→ sec A = 25/24
We have To find:
sin A * sec A/(1 + Cosec A * tan A)
Using , Cosec A = 1/sin A and tan A = sin A/Cos A in denominator we get,
→ sin A * sec A / [1 + (1/sin A)*(sin A/Cos A)]
→ sin A * sec A/(1 + 1/Cos A)
Writing 1/Cos A as sec A in denominator we get,
→ sin A * sec A/(1 + sec A)
Putting the values of sin A , sec A we get,
→ [ (7/25) * (25/24) ] / [ 1 + 25/24 ]
→ (7/24) / [ (24 + 25)/24) ]
→ 7/24 * 24/49
→ 1/7
Hence, the value of (sin A * sec A)/(1 + Cosec A * tan A) is 1/7.