यदि किसी A.P. के पदों का योग Sn = (3n2-n) है, तो निम्न को ज्ञात करें
(i) प्रथम पद (ii) सार्व-अन्तर (iii) n वा पद ।
Answers
Answered by
0
Step-by-step explanation:
Given यदि किसी A.P. के पदों का योग Sn = (3n2-n) है, तो निम्न को ज्ञात करें
(i) प्रथम पद (ii) सार्व-अन्तर (iii) n वा पद ।
- Given If in an A.P. The sum of the terms is Sn = (3 n^2-n), then find the following.
- (i) first term (ii) common difference (iii) n term.
- Given Sn = 3 n^2 – n
- Now Sn-1 = 3(n – 1)^2 – (n – 1)
- = 3(n^2 – 2n + 1) – (n – 1)
- = 3n^2 – 6n + 3 – n + 1
- = 3n^2 – 7n + 4
- We need to find the n th term, so
- Sn – Sn-1 = 3n^2 – n – (3n^2 – 7n + 4)
- = 3n^2 – n – 3n^2 + 7n – 4
- = 6n – 4
- Now first term will be
- So an = 6(1) - 4
- = 2
- Also common difference will be
- So an = 6n – 4
- A2 = 6(2) – 4
- = 12 – 4
- = 8
- Now d = a2 – a1
- = 8 – 2
- So d = 6
Reference link will be
https://brainly.in/question/1823597
# Answer with quality
# BAL
Similar questions