Math, asked by abhaykrishnamt8141, 10 months ago

यदि किसी A.P. के पदों का योग Sn = (3n2-n) है, तो निम्न को ज्ञात करें
(i) प्रथम पद (ii) सार्व-अन्तर (iii) n वा पद ।

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given यदि किसी A.P. के पदों का योग Sn = (3n2-n) है, तो निम्न को ज्ञात करें

(i) प्रथम पद (ii) सार्व-अन्तर (iii) n वा पद ।

  • Given If in an A.P. The sum of the terms  is Sn = (3 n^2-n), then find the following.
  • (i) first term (ii) common difference (iii) n term.
  • Given Sn = 3 n^2 – n
  • Now Sn-1 = 3(n – 1)^2 – (n – 1)
  •                  = 3(n^2 – 2n + 1) – (n – 1)
  •                  = 3n^2 – 6n + 3 – n + 1
  •                  = 3n^2 – 7n + 4
  • We need to find the n th term, so
  • Sn – Sn-1 = 3n^2 – n – (3n^2 – 7n + 4)
  •                = 3n^2 – n – 3n^2 + 7n – 4
  •               = 6n – 4
  • Now first term will be
  • So an = 6(1) - 4
  •          = 2
  • Also common difference will be
  • So an = 6n – 4
  •    A2 = 6(2) – 4
  •        = 12 – 4
  •      = 8
  • Now d = a2 – a1
  •           = 8 – 2
  • So d = 6

Reference link will be

https://brainly.in/question/1823597

# Answer with quality

# BAL

 

Similar questions