Math, asked by parth7445, 11 months ago

यदि tan⁻¹(1/2) + tan⁻¹(2) = tan⁻¹ α है, तब दर्शाइए कि α = [infinity]

Answers

Answered by harendrachoubay
0

α = ∞,  दिखाया

Step-by-step explanation:

दिया हुआ,

\tan^{-1} \dfrac{1}{2}+\tan^{-1} 2 =\tan^{-1} \alpha

दर्शाइए कि α = ∞

\tan^{-1} \dfrac{1}{2}+\tan^{-1} 2 =\tan^{-1} \alpha

हम जानते हैं कि,

\tan^{-1} x+\tan^{-1} y =\tan^{-1} \dfrac{x+y}{1-xy}

\tan^{-1} \dfrac{\dfrac{1}{2}+2}{1-\dfrac{1}{2}.2} =\tan^{-1} \alpha

\tan^{-1} \dfrac{\dfrac{1+2}{2}}{1-1} =\tan^{-1} \alpha

\tan^{-1} tan(\alpha)= \dfrac{\dfrac{3}{2}}{0}

\alpha= \dfrac{3}{0}=\infty

∴ α = ∞,  दिखाया

Similar questions