Math, asked by sudi9226, 9 months ago

यदि  A= \begin{bmatrix}  1 & 1 & -2  \\  2 & 1 & -3 \\ 5 & 4 & -9  \end{bmatrix} , तो |A| ज्ञात कीजिए।

Answers

Answered by amitnrw
0

Given :   A= \begin{bmatrix}  1 & 1 & -2  \\  2 & 1 & -3 \\ 5 & 4 & -9  \end{bmatrix}

To find :   |A| ज्ञात कीजिए।

Solution :

हमें पता है की यदि

A =  \begin{bmatrix}  a_{11} &  a_{12} &  a_{13}  \\  a_{21} &  a_{22} &  a_{23}\\a_{31} &  a_{32} &  a_{33}  \end{bmatrix}

Det A = | A |  = a₁₁ ( a₂₂ * a₃₃  - a₃₂ * a₂₃)  - a₁₂ (a₂₁ * a₃₃ - a₃₁ * a₂₃)  + a₁₃ (a₂₁ * a₃₂ - a₃₁ * a₂₂)

A= \begin{bmatrix}  1 & 1 & -2  \\  2 & 1 & -3 \\ 5 & 4 & -9  \end{bmatrix}

Det A = | A |   =  1( 1* (-9) - (4)(-3)) - (1)(2 * (-9) - (5) *(-3) ) + (-2)((2)*(4) - (5) * 1)

= 1( -9 + 12)  - (-18 + 15)  - 2(8 - 5)

= 1(3) -(-3) -2(3)

= 3 + 3 - 6

= 0

Det A = | A |   = 0

A= \begin{bmatrix}  1 & 1 & -2  \\  2 & 1 & -3 \\ 5 & 4 & -9  \end{bmatrix}   मान  = 0

और सीखें

"निम्नलिखित सारणिकों के मान ज्ञात कीजिए

(i)  -3 & -1 & 2  \\  0 & 0 & -1 \\ 3 & -5 & 0  

https://brainly.in/question/16385736

मान ज्ञात कीजिए

https://brainly.in/question/16385407

"मान ज्ञात कीजिए ।

https://brainly.in/question/16385413

https://brainly.in/question/16385415

Similar questions