Math, asked by vathsak2617, 11 months ago

यदि y= \begin{bmatrix}  f(x) & g(x)& h(x)\\  l & m & n  \\ a & b & c \end{bmatrix} हेतो सिद्ध कीजिए कि पा की  dy/dx = \begin{bmatrix}  f’(x) & g’(x) & h’(x) \\  l & m & n  \\ a & b & c \end{bmatrix}

Answers

Answered by amitnrw
0

सिद्ध किया

Step-by-step explanation:

y = \left[\begin{array}{ccc}f(x)&g(x)&h(x)\\l&m&n\\a&b&c\end{array}\right]

dy/dx = \left[\begin{array}{ccc}f'(x)&g'(x)&h'(x)\\l&m&n\\a&b&c\end{array}\right]

y = f(x) (mc - nb)  -g(x)(lc - an)  + h(x) (lb - am)

dy/dx = f'(x)(mc - nb)  -g'(x)(lc - an)  + h'(x) (lb - am)

dy/dx = \left[\begin{array}{ccc}f'(x)&g'(x)&h'(x)\\l&m&n\\a&b&c\end{array}\right]

dy/dx =  f'(x)(mc - nb)  -g'(x)(lc - an)  + h'(x) (lb - am)

f'(x)(mc - nb)  -g'(x)(lc - an)  + h'(x) (lb - am) =  f'(x)(mc - nb)  -g'(x)(lc - an)  + h'(x) (lb - am)

इति सिद्धम

और अधिक जानें :

(x + 3)^{2} .(x + 4)^{3} .(x + 5)^{4} प्रदत्त फलनों का x के सापेक्ष अवकलन कीजिए

brainly.in/question/15287089

f(x) = (1 + x) (1 + x^{2}) (1 + x^{4}) (1 + x^{8}) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।

brainly.in/question/15287093

Similar questions