यदि y = 5 cos x – 3 sin x है तो सिद्ध कीजिए कि
d^{2}y/dx^{2} +y =0
Answers
Given----> y = 5 Cosx - 3 Sinx
To prove----> d²y / dx² + y = 0
Proof----> We know that,
d/dx ( Sinx ) = Cosx
d/dx ( Cosx ) = - Sinx
Now, y = 5 Cosx - 3 Sinx
Differentiating with respect to x , we get,
=> dy/dx = d/dx ( 5Cosx ) - d/dx ( 3Sinx )
= 5 d/dx ( Cosx ) - 3 d/dx ( Sinx )
=> dy/dx = 5 ( - Sinx ) - 3 ( Cosx )
=> dy/dx = - 5 Sinx - 3 Cosx
Differentiating with respect to x again , we get,
=> d²y/dx² = -5 d/dx ( Sinx ) - 3 d/dx ( Cosx )
= - 5 Cosx - 3 ( - Sinx )
= - 5 Cosx + 3 Sinx
= - ( 5 Cosx - 3 Sinx )
=> d²y/dx² = - y
=> d²y/dx² + y = 0
d²y/dx² + y = 0 यदि y = 5 cos x – 3 sin x
Step-by-step explanation:
द्वितीय कोटि के अवकलज ज्ञात कीजिए
y = 5 cos x – 3 sin x
=> dy/dx = 5 (-Sinx) - 3(Cosx)
=> dy/dx = - (5Sinx + 3Cosx)
d²y/dx² = - ( 5Cosx - 3Sinx)
=> d²y/dx² = - y
=> d²y/dx² + y = 0
QED
सिद्ध
और अधिक जानें :
X^{20} द्वितीय कोटि के अवकलज ज्ञात कीजिए
https://brainly.in/question/15287535
x cos x द्वितीय कोटि के अवकलज ज्ञात कीजिए
https://brainly.in/question/15287541