Math, asked by hasavathmeghana00, 1 month ago

You are attempting que
is,
The ROC for the bilateral Laplace transform of x(t) = e-andt)
(a) Re(s)<-a
(b) Re(s) >-a
(c) -a< Re(s)< 0
(d) ROC doesn't exist​

Answers

Answered by ItzEnchantedBoy
0

Answer:

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\large\green{\mid{\fbox{\tt{Ꭲօ թɾօѵҽ}}\mid}}

\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}=2cosecθ

\large\red{\mid{\fbox{\tt{รοℓυƭเօɳ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร}}\mid}}=

⟹\sf\bold{\blue{\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+(1+cosθ)²}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+1+cos²θ+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+cos²θ+1+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2(1+cosθ)}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2}{sinθ}}}

⟹\large\pink{\mid{\fbox{\tt{2.coseθ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร=ƦᎻร}}\mid}}

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

_________________________________⠀⠀⠀⠀

⠀⠀⠀ \large\green{\mid{\fbox{\tt{❥ϐℓυєᴇყεร}}\mid}}

_________________________________⠀

Answered by 7908757637
0

Answer:

(a)

is your answer ok

Step-by-step explanation:

RE(S)<-a

Similar questions