Math, asked by atharvanag, 5 days ago

you have a spinning wheel with 3 green sectors, 2 blue sector and 4 red sector. The probability of getting a green sector and a non blue sector are respectively​

Answers

Answered by Anonymous
14

Given :-

  • Green sector = 3
  • Blue sector = 2
  • Red sector = 4

To Find :-

  • Probability of getting green sector = ?
  • Probability of getting non - blue sector = ?

Solution :-

Formula of finding probability :

{\red{\bigstar \:  \: {\orange{\underbrace{\orange{\underline{\mathfrak{Probability =  \frac{favourable \: outcomes}{total \: outcomes} }}}}}}}}

Than :

{\mapsto{\bf{probability \:  of  \: getting \:  green  \: sector }}}

{\twoheadrightarrow{\sf{Green \:  sector = 3}}}

{\twoheadrightarrow{\sf{Total  \: outcomes = 9}}}

{\leadsto{\sf{Probability = \frac{favourable \: outcomes}{total \: outcomes}  }}}

{\leadsto{\sf{Probability = \frac{3}{9}  }}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

{\mapsto{\bf{probability \:  of  \: getting \:  non \: blue  \: sector }}}

{\twoheadrightarrow{\sf{non \: blue \:  sector = 7}}}

{\twoheadrightarrow{\sf{Total  \: outcomes = 9}}}

{\leadsto{\sf{Probability = \frac{favourable \: outcomes}{total \: outcomes}  }}}

{\leadsto{\sf{Probability = \frac{7}{9}  }}}

So :

{\red{\underline{\green{\underline{\purple{\boxed{\red{\bf{Probability \:  of \:  getting \:  green  \: sector =  \frac{3}{9} }}}}}}}}}

{\red{\underline{\green{\underline{\purple{\boxed{\red{\bf{Probability \:  of  \: getting  \: non - blue \:  sector =  \frac{7}{9} }}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by brainly10038
2

Answer:

Given :-</p><p>Green sector = 3</p><p>Blue sector = 2</p><p>Red sector = 4</p><p>To Find :-</p><p>Probability of getting green sector = ?</p><p>Probability of getting non - blue sector = ?</p><p>Solution :-</p><p>❒Formula of finding probability :</p><p>{\red{\bigstar \: \: {\orange{\underbrace{\orange{\underline{\mathfrak{Probability = \frac{favourable \: outcomes}{total \: outcomes} }}}}}}}}★ </p><p>Probability= </p><p>totaloutcomes</p><p>favourableoutcomes</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>❒Than :</p><p>{\mapsto{\bf{probability \: of \: getting \: green \: sector }}}↦probabilityofgettinggreensector </p><p></p><p>{\twoheadrightarrow{\sf{Green \: sector = 3}}}↠Greensector=3 </p><p></p><p>{\twoheadrightarrow{\sf{Total \: outcomes = 9}}}↠Totaloutcomes=9 </p><p></p><p>{\leadsto{\sf{Probability = \frac{favourable \: outcomes}{total \: outcomes} }}}⇝Probability= </p><p>totaloutcomes</p><p>favourableoutcomes</p><p></p><p></p><p></p><p>{\leadsto{\sf{Probability = \frac{3}{9} }}}⇝Probability= </p><p>9</p><p>3</p><p></p><p></p><p></p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃ </p><p></p><p>{\mapsto{\bf{probability \: of \: getting \: non \: blue \: sector }}}↦probabilityofgettingnonbluesector </p><p></p><p>{\twoheadrightarrow{\sf{non \: blue \: sector = 7}}}↠nonbluesector=7 </p><p></p><p>{\twoheadrightarrow{\sf{Total \: outcomes = 9}}}↠Totaloutcomes=9 </p><p></p><p>{\leadsto{\sf{Probability = \frac{favourable \: outcomes}{total \: outcomes} }}}⇝Probability= </p><p>totaloutcomes</p><p>favourableoutcomes</p><p></p><p></p><p></p><p>{\leadsto{\sf{Probability = \frac{7}{9} }}}⇝Probability= </p><p>9</p><p>7</p><p></p><p></p><p></p><p>❒So :</p><p>{\red{\underline{\green{\underline{\purple{\boxed{\red{\bf{Probability \: of \: getting \: green \: sector = \frac{3}{9} }}}}}}}}} </p><p>Probabilityofgettinggreensector= </p><p>9</p><p>3</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>{\red{\underline{\green{\underline{\purple{\boxed{\red{\bf{Probability \: of \: getting \: non - blue \: sector = \frac{7}{9} }}}}}}}}} </p><p>Probabilityofgettingnon−bluesector= </p><p>9</p><p>7</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions