Young's double slit experiment equations
Answers
Answered by
3
Draw AM perpendicular to BP
The path difference δ = BP – AP
AP = MP
δ = BP – AP = BP – MP = BM
In right angled ? ABM, BM = d sin θ If θ is small,
sin θ = θ
The path difference δ = θ.d
In right angled triangle COP, tan θ = OP/CO = x/D
For small values of θ, tan θ = θ
Thus, the path difference δ = xd/D
Bright Fringes
By the principle of interference, condition for constructive interference is the path difference = nλ
xd/D = nλ
Here, n = 0,1,2.....indicate the order of bright fringes
So, x = (D/d) nλ
This equation gives the distance of the nthbright fringe from the point O.
The path difference δ = BP – AP
AP = MP
δ = BP – AP = BP – MP = BM
In right angled ? ABM, BM = d sin θ If θ is small,
sin θ = θ
The path difference δ = θ.d
In right angled triangle COP, tan θ = OP/CO = x/D
For small values of θ, tan θ = θ
Thus, the path difference δ = xd/D
Bright Fringes
By the principle of interference, condition for constructive interference is the path difference = nλ
xd/D = nλ
Here, n = 0,1,2.....indicate the order of bright fringes
So, x = (D/d) nλ
This equation gives the distance of the nthbright fringe from the point O.
realsardaarni:
hlo
Answered by
0
Answer:
The equation d sin θ = mλ (for m = 0, 1, −1, 2, −2, . . . ) describes constructive interference. For fixed values of d and λ, the larger m is, the larger sin θ is. However, the maximum value that sin θ can have is 1, for an angle of 90º.
Similar questions