Math, asked by divitvr, 11 months ago

Z (4, 5) and X(7, – 1) are two given points and the point Y divides the line-segment ZX externally in the ratio 4:3. Find the coordinates of Y​

Answers

Answered by VishnuPriya2801
13

Answer:-

Given :

Z = (4 , 5)

X = (7 , - 1)

Y divides the line - Segment in the ratio 4 : 3 externally.

Let m = 4 and n = 3

We know that,

The point which divide a line - Segment joining the points (a , b) and (p , q) in the ratio m : n externally is,

(x \: , \: y) = [  \frac{(m \times p)  - (n \times a )}{m   -  n}  \: ,  \:  \frac{(m \times q)  - ( n \times b)}{m  -  n} ] \\  \\ (x \: , \: y) =  [\frac{(4 \times 7) - (3  \times 4)}{4 - 3}  \:,  \:  \frac{(4 \times ( - 1)) - (3 \times 5)}{4 - 3}]  \\  \\ (x \:,  \: y) =  [\frac{28 - 12}{1}  \: , \:  \frac{ - 4 - 15}{ 1} ] \\  \\ (x \:  ,\: y) = (16 \: , \:  - 19)

Y(x , y) = (16 , - 19)

Hence, the Coordinates of Y are (x , y) = (16 , - 19).

Similar questions