Math, asked by potterheadArushi, 7 months ago

Zero of the polynomial (x-3)^2 - (x+3)^2

Answers

Answered by Anonymous
2

(x-3)² - (x+3)²

Identity to be used = a² - b² = (a+b)(a-b)

» (x-3+x+3)(x-3-x-3)

» 2x(-6)

» -12x = 0

» x = 0

Answered by Anonymous
7

Answer :

Given :

 : \implies \sf (x\:-\:3)²\:-\:(x\:+\:3)² \\

To Find :

 : \implies \sf Zero\:of\:the\:polynomial \\

Solution :

\small{\sf{\red{Identity\:used\::}} \small a²\:-\:b²\:=\:(a\:+\:b)(a\:-\:b)}

 : \implies \small \sf (x\:-\:3\:+\:x\:+\:3)(x\:-\:3\:-\:x\:-\:3) \\

 : \implies \small \sf 2x\:(\:-\:6\:) \\

Now , equate it to Zero .

 : \implies \small \sf 2x\:(\:-\:6\:)\:=\:0 \\

 : \implies \small \sf 2x\:=\:6 \\

 : \implies \small \sf x\:=\: \dfrac{6}{2} \\

 : \implies \large \sf {\red{x\:=\:3 }}\\

Zero of polynomial is 3 .

_____________________

Similar questions