Math, asked by vinoothna25, 11 months ago

zeros of the polynomial Z cube​

Answers

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The zeros of the polynomial

 \sf{ {z}^{3} - 8 }

EVALUATION

Here the given polynomial is

 \sf{ {z}^{3} - 8 }

Now we find the zeroes as below

 \sf{ {z}^{3} - 8  = 0}

 \sf{  \implies \: {z}^{3} -  {2}^{3}   = 0}

 \sf{ \implies \:(z - 2)( {z}^{2} + 2z + 4) = 0 }

Now z - 2 = 0 gives z = 2

Now

 \sf{ ( {z}^{2} + 2z + 4) = 0 }

  \displaystyle\sf{ \implies z =  \frac{ - 2 \pm \:  \sqrt{ {2}^{2}  - 4 \times 1 \times 4} }{2 \times 1}  }

  \displaystyle\sf{ \implies z =  \frac{ - 2 \pm \:  \sqrt{ 4 - 16} }{2 \times 1}  }

  \displaystyle\sf{ \implies z =  \frac{ - 2 \pm \:  \sqrt{  - 12} }{2 }  }

  \displaystyle\sf{ \implies z =  \frac{ - 2 \pm \: 2 \sqrt{   - 3} }{2 }  }

  \displaystyle\sf{ \implies z =   - 1 \pm \: \sqrt{   - 3} }

Hence the required zeroes are

 \sf{2 \:  ,\:  - 1 +  \sqrt{3}  \:  ,\:  - 1 -  \sqrt{3} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Write the degree of the polynomial :

4z3 – 3z5 + 2z4 + z + 1

https://brainly.in/question/7735375

2. Find the degree of 2020?

https://brainly.in/question/25939171

Answered by rajeswarivinjamarala
0

please mark as brainliast answer

Attachments:
Similar questions