ᴡʜʏ ɪꜱ ʏᴀᴡɴɪɴɢ ᴄᴏɴᴛᴀɢɪᴏᴜꜱ?
Answers
Answer:
Answer:
A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)
856×856+167×167
(856+167)
2
+(856−167)
2
{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)
2
+(a−b)
2
=2(a
2
+b
2
)
so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so
(856
2
+167
2
)
2(856
2
+167
2
)
=2
1st question answer is 2
2)\:a^2+b^2+c^2= > 792)a
2
+b
2
+c
2
=>79
and \: ab +bc+ca= > 45andab+bc+ca=>45
{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ca)
so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)
2
=79+2(45)=79+90=169
{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13
2nd question answer is 13 or -13
3)x + y + z = 143)x+y+z=14
{x}^{2} + {y}^{2} + {z}^{2} = 50x
2
+y
2
+z
2
=50
{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)
2
=x
2
+y
2
+z
2
+2(xy+yz+xz)
{14}^{2} = 50 + 2(xy + yz + xz)14
2
=50+2(xy+yz+xz)
196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)
146 = 2(xy + yz + zx)146=2(xy+yz+zx)
(xy + yz + zx) = 73(xy+yz+zx)=73
3rd answer is 73.Answer:
A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)
856×856+167×167
(856+167)
2
+(856−167)
2
{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)
2
+(a−b)
2
=2(a
2
+b
2
)
so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so
(856
2
+167
2
)
2(856
2
+167
2
)
=2
1st question answer is 2
2)\:a^2+b^2+c^2= > 792)a
2
+b
2
+c
2
=>79
and \: ab +bc+ca= > 45andab+bc+ca=>45
{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ca)
so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)
2
=79+2(45)=79+90=169
{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13
2nd question answer is 13 or -13
3)x + y + z = 143)x+y+z=14
{x}^{2} + {y}^{2} + {z}^{2} = 50x
2
+y
2
+z
2
=50
{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)
2
=x
2
+y
2
+z
2
+2(xy+yz+xz)
{14}^{2} = 50 + 2(xy + yz + xz)14
2
=50+2(xy+yz+xz)
196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)
146 = 2(xy + yz + zx)146=2(xy+yz+zx)
(xy + yz + zx) = 73(xy+yz+zx)=73
3rd answer is 73.Answer:
A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)
856×856+167×167
(856+167)
2
+(856−167)
2
{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)
2
+(a−b)
2
=2(a
2
+b
2
)
so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so
(856
2
+167
2
)
2(856
2
+167
2
)
=2
1st question answer is 2
2)\:a^2+b^2+c^2= > 792)a
2
+b
2
+c
2
=>79
and \: ab +bc+ca= > 45andab+bc+ca=>45
{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ca)
so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)
2
=79+2(45)=79+90=169
{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13
2nd question answer is 13 or -13
3)x + y + z = 143)x+y+z=14
{x}^{2} + {y}^{2} + {z}^{2} = 50x
2
+y
2
+z
2
=50
{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)
2
=x
2
+y
2
+z
2
+2(xy+yz+xz)
{14}^{2} = 50 + 2(xy + yz + xz)14
2
=50+2(xy+yz+xz)
196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)
146 = 2(xy + yz + zx)146=2(xy+yz+zx)
(xy + yz + zx) = 73(xy+yz+zx)=73
3rd answer is 73.
Hey there,
It's a kind of psychological response. Sometimes, when we see people yawning, we automaticlly yawn, it's more like an empathic reaction to a yawn of the people we may know. It happens unconsciously, that we don't even think much of it.
Moreover, it's a simple psychology for example, when you see a familiar smile, most probably, you'll smile at them, too.
Thank ya!