English, asked by Anonymous, 6 months ago

ᴡʜʏ ɪꜱ ʏᴀᴡɴɪɴɢ ᴄᴏɴᴛᴀɢɪᴏᴜꜱ?

Answers

Answered by gumnaambadshah
2

Answer:

Answer:

A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)

856×856+167×167

(856+167)

2

+(856−167)

2

{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)

2

+(a−b)

2

=2(a

2

+b

2

)

so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so

(856

2

+167

2

)

2(856

2

+167

2

)

=2

1st question answer is 2

2)\:a^2+b^2+c^2= > 792)a

2

+b

2

+c

2

=>79

and \: ab +bc+ca= > 45andab+bc+ca=>45

{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ca)

so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)

2

=79+2(45)=79+90=169

{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13

2nd question answer is 13 or -13

3)x + y + z = 143)x+y+z=14

{x}^{2} + {y}^{2} + {z}^{2} = 50x

2

+y

2

+z

2

=50

{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)

2

=x

2

+y

2

+z

2

+2(xy+yz+xz)

{14}^{2} = 50 + 2(xy + yz + xz)14

2

=50+2(xy+yz+xz)

196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)

146 = 2(xy + yz + zx)146=2(xy+yz+zx)

(xy + yz + zx) = 73(xy+yz+zx)=73

3rd answer is 73.Answer:

A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)

856×856+167×167

(856+167)

2

+(856−167)

2

{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)

2

+(a−b)

2

=2(a

2

+b

2

)

so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so

(856

2

+167

2

)

2(856

2

+167

2

)

=2

1st question answer is 2

2)\:a^2+b^2+c^2= > 792)a

2

+b

2

+c

2

=>79

and \: ab +bc+ca= > 45andab+bc+ca=>45

{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ca)

so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)

2

=79+2(45)=79+90=169

{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13

2nd question answer is 13 or -13

3)x + y + z = 143)x+y+z=14

{x}^{2} + {y}^{2} + {z}^{2} = 50x

2

+y

2

+z

2

=50

{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)

2

=x

2

+y

2

+z

2

+2(xy+yz+xz)

{14}^{2} = 50 + 2(xy + yz + xz)14

2

=50+2(xy+yz+xz)

196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)

146 = 2(xy + yz + zx)146=2(xy+yz+zx)

(xy + yz + zx) = 73(xy+yz+zx)=73

3rd answer is 73.Answer:

A) \frac{(856+167)^2+(856-167)^2}{856×856+167×167} A)

856×856+167×167

(856+167)

2

+(856−167)

2

{(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )(a+b)

2

+(a−b)

2

=2(a

2

+b

2

)

so \: \frac{2( {856}^{2} + {167}^{2} ) }{( {856}^{2} + {167}^{2} )} = 2so

(856

2

+167

2

)

2(856

2

+167

2

)

=2

1st question answer is 2

2)\:a^2+b^2+c^2= > 792)a

2

+b

2

+c

2

=>79

and \: ab +bc+ca= > 45andab+bc+ca=>45

{(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca)(a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ca)

so \: {(a + b + c)}^{2} = 79 + 2(45) = 79 + 90 = 169so(a+b+c)

2

=79+2(45)=79+90=169

{(a + b + c)} = 13 \: or \: - 13(a+b+c)=13or−13

2nd question answer is 13 or -13

3)x + y + z = 143)x+y+z=14

{x}^{2} + {y}^{2} + {z}^{2} = 50x

2

+y

2

+z

2

=50

{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2(xy + yz + xz)(x+y+z)

2

=x

2

+y

2

+z

2

+2(xy+yz+xz)

{14}^{2} = 50 + 2(xy + yz + xz)14

2

=50+2(xy+yz+xz)

196 - 50 = 2(xy + yz + zx)196−50=2(xy+yz+zx)

146 = 2(xy + yz + zx)146=2(xy+yz+zx)

(xy + yz + zx) = 73(xy+yz+zx)=73

3rd answer is 73.

Answered by Anonymous
4

Hey there,

It's a kind of psychological response. Sometimes, when we see people yawning, we automaticlly yawn, it's more like an empathic reaction to a yawn of the people we may know. It happens unconsciously, that we don't even think much of it.

Moreover, it's a simple psychology for example, when you see a familiar smile, most probably, you'll smile at them, too.

Thank ya!

Similar questions