Math, asked by Anonymous, 5 months ago

ꜰɪɴᴅ ᴛʜᴇ ᴀʀᴇᴀꜱ ᴏꜰ ᴛʜᴇ ꜰɪɢᴜʀᴇꜱ ɢɪᴠᴇɴ ʙᴇʟᴏᴡ :-​

Attachments:

Answers

Answered by Anonymous
0

Answer:

area of first figure= 76

area of second figure=200

Answered by suraj5070
152

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

ꜰɪɴᴅ ᴛʜᴇ ᴀʀᴇᴀꜱ ᴏꜰ ᴛʜᴇ ꜰɪɢᴜʀᴇꜱ ɢɪᴠᴇɴ ʙᴇʟᴏᴡ :-

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \huge {iii}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf {ABCD \:is \:a\: square}
  •  \sf \bf {AFE\: and\: DGH\: are \:triangles}
  •  \sf \bf {AB=BC=CD=DA=8cm}
  •  \sf \bf {FE=GH=4cm}
  •  \sf \bf {AE=DH=5cm}
  •  \sf \bf {AF=DG=4cm}

 \sf \bf (AF=AB-FB\\=8-4 \\AF=4cm) \\\\ (DG=DC-GC\\=8-4\\DG=4cm)

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \sf \bf {Area \:of \:the\: total\: figure}

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \sf \bf {Area\: of\: the\: square}

 \sf \bf {\boxed {\color{blue} {A={a}^{2}}}}

  •  \sf \bf {A=area\: of \:the \:square}
  •  \sf \bf {a=side\: of \:a\: square}

 \sf \bf {Substitute \:the\: values}

 \sf \bf \implies A={8}^{2}

 \sf \bf \implies {\boxed {\color{red} {A=64 {cm}^{2}}}}

 \sf \bf {Area\: of\: the\: 2 \:triangles}

 \sf \bf {\boxed {\color{blue} {A=\dfrac{1}{2} \times b \times h}}}

  •  \sf \bf {A=area\: of \:the \:triangle}
  •  \sf \bf {h=height }
  •  \sf \bf {b=breadth}

 \sf \bf {Substitute \:the\: values}

 \sf \bf \implies A=\cancel{2}\dfrac{1}{\cancel {2}} \times 4 \times 4

 \sf \bf \implies A=4 \times 4

 \sf \bf \implies {\boxed {\color{red} {A=16{cm}^{2}}}}

 \sf \bf {Total\: area\: of\: the\: figure}

 \sf \bf \implies A=64+16

 \sf \bf \implies {\boxed {\boxed {\color{green} {A=80{cm}^{2}}}}}

_______________________________________ _______________________________________

 \sf \bf \huge {iv}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf {ABCD \:is \:a\: rectangle}
  •  \sf \bf {AFG\:,\: DFG\:, \:BEH\:, \:CEH\:are \:triangles}
  •  \sf \bf {AB=CD=15cm}
  •  \sf \bf {BC=DA=10cm}
  •  \sf \bf {FG=EH=5cm}

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \sf \bf {Area \:of \:the\: total\: figure}

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \sf \bf {Area\: of\: the\: rectangle}

 \sf \bf {\boxed {\color{blue} {A=l \times b}}}

  •  \sf \bf {A=area\: of \:the \:rectangle}
  •  \sf \bf {l=length}
  •  \sf \bf {b=breadth}

 \sf \bf {Substitute \:the\: values}

 \sf \bf \implies {A=10 \times 15}

 \sf \bf \implies {\boxed {\color{red}{A= 150{cm}^{2}}}}

 \sf \bf {Area\: of\: the\: 4 \:triangles}

 \sf \bf {\boxed {\color{blue} {A=\dfrac{1}{2} \times b \times h}}}

  •  \sf \bf {A=area\: of \:the \:triangle}
  •  \sf \bf {h=height }
  •  \sf \bf {b=breadth}

 \sf \bf {Substitute \:the\: values}

 \sf \bf \implies A=4\dfrac{1}{2} \times 5 \times 5

 \sf \bf \implies A=2 \times 5 \times 5

 \sf \bf \implies {\boxed {\color{red} {A=50{cm}^{2}}}}

 \sf \bf {Total\: area\: of\: the\: figure}

 \sf \bf \implies A=150+50

 \sf \bf \implies {\boxed {\boxed {\color{green} {A=200{cm}^{2}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

__________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

  •  \sf \bf {Area\: of \:the \:triangle=\dfrac{1}{2} \times b \times h}

  •  \sf \bf {Area\: of \:the \:Square ={a}^{2}}

  •  \sf \bf {Area\: of \:the \:rectangle = l\times b }

  •  \sf \bf {Area\: of \:the \: parallelogram= B \times h}

  •  \sf \bf {Area\: of \:the \:rhombus = \dfrac{d_1 \times d_2}{2}}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Attachments:
Similar questions