Math, asked by alinasethi9, 1 month ago

find the coordinates of the point which divides the line segment joining the point (2,-1) and (-3,4) internally in ratio 3:2 ​

Answers

Answered by SachinGupta01
25

\bf \underline{ \underline{\maltese\:Given} }

Coordinates of the point are A(2,-1) and B(-3,4) and the ratio of the line segment which is 3:2

Let P(x,y) be a point that divides the line joing the point A and B in the ratio 3:2 internally.

\sf \implies Ratio \: in \: which \: P \: divides \: A \: and \: B \: is \: 3:2

\bf \underline{\underline{\maltese\: To \: find }}

\sf \implies Coordinates \: of \: point \:  P = \: ?

\bf \underline{\underline{\maltese\: Solution }}

\bf \underline{ Using\;section\;formula} :

{\boxed{\sf{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}}}

\bf \underline{Where},

\sf \implies m_1 = 3

\sf \implies m_2 = 2

\sf \implies x_1 = 2

\sf \implies x_2 =  - 3

\sf \implies y_1 =  - 1

\sf \implies y_2 = 4

 \bf \underline{Now, putting \:  the  \: values},

\sf{(x,y) = \bigg( \dfrac{2 \times  2 + 3 \times  ( - 3)}{3 + 2}\;,\; \dfrac{2 \times   (- 1) + 3 \times  4}{3 + 2} \bigg)}

\sf{(x,y) = \bigg( \dfrac{4 +  (- 9)}{3 + 2}\;,\; \dfrac{  - 2 +12}{3 + 2} \bigg)}

\sf{(x,y) = \bigg( \dfrac{4 - 9}{5}\;,\; \dfrac{  - 2 +12}{5} \bigg)}

\sf{(x,y) = \bigg( \dfrac{- 5}{5}\;,\; \dfrac{10}{5} \bigg)}

\sf{(x,y) = \bigg(  - 1\;,\; 2 \bigg)}

\underline{\boxed{\bf \red{Hence , the \: required \: coordinates \: of \: the \: point \: are \bigg(  - 1 \:,\: 2\bigg)}}}


Ataraxia: Nice!
Answered by Anonymous
132

Let P(x,y) be the point which divides the line segment internally.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

★ Using the section formula for the internal division, i.e. -

{ }

  • {\underline{\underline{\sf{\red{(x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2}\;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)}}}}}

{ }

{\textsf{\textbf{\underline{Given\::}}}}

  • \sf{m_1\:=\:3}
  • \sf{m_2\:=\:2}
  • \sf{(x_1,\:y_1)\:=\:(2,\:-1)}
  • \sf{(x_2,\:y_2)\:=\:(-3,\:4)}

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

{ }

Putting the above values in the above formula, we get :

{ }

\:\:\:\::\:\Longrightarrow\:\sf{(x,y)\:=\:{\dfrac{3\:(-3)\:+\:2\:(2)}{3\:+\:2}}\:\:\:,\:\:\:{\dfrac{3\:(4)\:+\:2\:(-1)}{3\:+\:2}}}

{ }

\:\:\:\::\:\Longrightarrow\:\sf{(x,y)\:=\:{\dfrac{-9\:+\:4}{5}}\:\:\:,\:\:\:{\dfrac{12\:-\:2}{5}}}

{ }

\:\:\:\::\:\Longrightarrow\:\sf{(x,y)\:=\:{\dfrac{-5}{5}}\:\:\:,\:\:\:{\dfrac{10}{5}}}

{ }

\:\:\:\::\:\Longrightarrow\:\sf{(x,y)\:=\:-1\:\:\:,\:\:\:2}

{ }

{ }

\:\therefore\:{\underline{\sf{Hence,\:{\textsf{\textbf{(-1,\:2)}}}\:is\: the \:point \:which \:divides\: the\: line \:segment \:internally}}}.

{ }

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions