011. If the function ()
K sin x+2cosx
is
sin -+ cos2
increasing for all values of x then
A K<1
B K> 1
C K<2
D K>2
Answers
Answered by
1
Answer:
Step-by-step explanation:
ANSWER
The given function is:
f(x)=
sinx+cosx
Ksinx+2cosx
Differentiating once w.r.t x and and making it greater than 0 to make it monotonically increasing we get,
⇒f
′
(x)=
(sinx+cosx)
2
(Kcosx−2sinx)(sinx+cosx)−(cosx−sinx)(Ksinx+2cosx)
⇒f
′
(x)=
(sinx+cosx)
2
Ksinxcosx+Kcos
2
x−2sin
2
x−2sinxcosx−Ksinxcosx−2cos
2
x+Ksin
2
x+2sinxcosx
⇒f
′
(x)=
(sinx+cosx)
2
Kcos
2
x+Ksin
2
x−2cos
2
x−2sin
2
x
⇒f
′
(x)=
(sinx+cosx)
2
K−2
Now, f
′
(x)>0
⇒
(sinx+cosx)
2
K−2
>0
⇒K−2>0
⇒K>2 .....Answer
Similar questions