Physics, asked by pratyushbokaro, 9 months ago

03
g
Q. 3 A cricket ball of mass 150 g has an initial velocity u = (3î +4ĵ)ms-1 and a
final velocity v=- (3î + 4ſ) ms
ma-1
after being hit. The change in
momentum (final momentum-initial momentum) is (in kgms-2)
(b) – (0.45 +0.69)
(c) – (0.99 +1.2h
(d) – 5( + h) îs sit abeum (b)
no
(a) zero
bin

samjhao guyzzz​

Answers

Answered by amansharma264
17

  \green{\rm \implies{ \underline{given}}}

cricket ball of mass = 150 g

 \rm \to \: initial \: velocity \:  = u \:  = (3\hat{i} + 4 \hat{j})ms {}^{ - 1}

 \rm \to \: final \: velocity \:  =  \: v \:  =  - (3 \hat{i} + 4 \hat{j})ms {}^{ - 1}

 \blue{ \underline{ \rm \to \: to \: find \: the \: change \: in \: momentum}}

According to the question,

mass = 150g = 0.15 kg.

Let,

 \rm \to \: initial \: momentum \:  =   \vec{p}_{i} = mu

 \rm \to \: (0.15)(3 \hat{i} \:  + 4 \hat{j})ms {}^{ - 1}

 \rm \to \: (0.45 \hat{i} \:  +  0.6 \hat{j}) \: kgms {}^{ - 1}

 \rm \to \: final \: momentum \:  =   \vec{p}_{f} \:  =  \: mv

 \rm \to \: (0.15)( - 3 \hat{i} - 4 \hat{j})ms {}^{ - 1}

 \rm \to \: ( - 0.45 \hat{i} - 0.6 \hat{j})kgms {}^{ - 1}

 \rm \implies{ \underline{change \: in \: momentum \:   = \Delta p \:  =  p_{f} \:  -  \:  p_{i}  }}

 \rm \to \: ( - 0.45 \hat{i}  - 0.6 \hat{j}) - (0.45 \hat{i}  + 0.6 \hat{j})

 \rm \to - (0.9 \hat{i}  + 1.2 \hat{j})kgms {}^{ - 1}

Similar questions