Math, asked by riyavig8, 1 year ago

(1 + 1/tan^2 theta)( 1 + 1/cot^2 theta) = 1/sin^2 theta - sin^4 theta

Answers

Answered by krishna1999manohar65
314

Answer:see the attachment


Step-by-step explanation:


Attachments:
Answered by mysticd
87

Solution:

Given

LHS=\left(1+\frac{1}{tan^{2}\theta}\right)\left(1+\frac{1}{cot^{2}\theta}\right)\\</p><p>= \left(1+cot^{2}\theta\right)\cdot\left(1+tan^{2}\theta\right)

_________________________

We know,

i) \frac{1}{tan\theta}=cot\theta

ii)\frac{1}{cot\theta}=tan\theta

Trigonometric identities :

1) 1+\cot^{2}\theta = cosec^{2}\theta

2) 1+tan^{2}\theta = sec^{2}\theta

3) cos^{2}\theta=1-sin^{2}\theta

and

a) cosec\theta = \frac{1}{sin\theta}

b) sec\theta = \frac{1}{cos\theta}

_________________________

=cosec^{2}\theta sec^{2}\theta

= \frac{1}{sin^{2}\theta}\cdot\frac{1}{cos^{2}\theta}

= \frac{1}{sin^{2}\theta\left(1-sin^{2}\theta\right)}

= \frac{1}{sin^{2}\theta-sin^{4}\theta}

=$RHS$

••••

Similar questions