1+2+3....+n2 =n(n+1)(2n+1)/6
Answers
Answered by
2
1²+2²+3²+4²+...+n² = n(n+1)(2n+1) / 6
Consider the binomial expansion of:
(x–1)³ – x³ = –3x²+3x – 1
Putting values of x from 1 to n to obtain the partial sum
(1–1)³–(1)³ = –3(1)²+3(1)–1
(2–1)³–(2)³= –3(2)²+3(2)–1
... ... ... ... ...
(n–1)³–(n)³ = –3(n²)+3(n)–1
(+) (+) (+) (+) (+)
_____________________
–(n)³ = –(1²+2²+3²+...+n²) +3(1+2+3+...+n) –n
So, (1²+2²+3²+..+n²) = (n³+3(n²+n)/2 –n)/3
OR (1²+2²+3²+..+n²) = n(n+1)(2n+1) / 6
Similar questions
Math,
3 months ago
Political Science,
7 months ago
Business Studies,
7 months ago
Chemistry,
11 months ago
English,
11 months ago
Math,
11 months ago