Math, asked by danerstiker47, 1 year ago

1/2x-3 +1/x-5 =1 solve for x

Answers

Answered by adyasis1maharana
103

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
182

Answer:

x=\frac{8+3\sqrt{2}}{2}

Or

x=\frac{8-3\sqrt{2}}{2}

Explanation:

Given \frac{1}{2x-3}+\frac{1}{x-5}=1

\implies \frac{x-5+2x-3}{(2x-3)(x-5)}=1

\implies \frac{3x-8}{2x^{2}-10x-3x+15}=1

\implies \frac{3x-8}{2x^{2}-13x+15}=1

\implies 3x-8 = 2x^{2}-13x+15}

\implies 0= 2x^{2}-13x+15-3x+8=0

\implies 2x^{2}-16x+23=0

Now ,

Compare above Quadratic equation with ax²+bx+c=0, we get

a = 2 , b = -16, c = 23

Discreminant (D) =-4ac

= (-16)²- 4×2×23

= 256 - 184

= 72

/* By Quadratic Formula */

\boxed {x = \frac{-b±\sqrt{D}}{2a}}

x =\frac{-(-16)±\sqrt{72}}{2×2}

= \frac{16±6\sqrt{2}}{4}

= \frac{2(8±3\sqrt{2}}{4}

= \frac{8±3\sqrt{2}}{2}

Therefore,

x=\frac{8+3\sqrt{2}}{2}

Or

x=\frac{8-3\sqrt{2}}{2}

Similar questions