(x-5)(x-6)=25/576 solve for x
Answers
Answered by
83
(x-5)(x-6) = 25/567
⇒ x²-6x-5x+30 = 5/24
x²-10x+25-(x-5) = 5/24
⇒ (x-5)²-(x-5)-(5/24)² = 0
⇒ y²-y-(5/24)² = 0
⇒ y²-25y/24+y/24-5²/24² = 0
⇒ y(y-25/24) 1/24(y-25/24) = 0
⇒ (y-25/24)(y+1/24) = 0
⇒ y-25/24 = 0 , then y = 25/24
therefore, x-5 = 25/24 ,⇒ x = 25/24+5 = 145/24
And y+1/24 = 0, then y = -1/24
therefore, x-5 = -1/24 , ⇒ x = 5-1/24 = 119/24
the values of x are 145/24 and 119/24
⇒ x²-6x-5x+30 = 5/24
x²-10x+25-(x-5) = 5/24
⇒ (x-5)²-(x-5)-(5/24)² = 0
⇒ y²-y-(5/24)² = 0
⇒ y²-25y/24+y/24-5²/24² = 0
⇒ y(y-25/24) 1/24(y-25/24) = 0
⇒ (y-25/24)(y+1/24) = 0
⇒ y-25/24 = 0 , then y = 25/24
therefore, x-5 = 25/24 ,⇒ x = 25/24+5 = 145/24
And y+1/24 = 0, then y = -1/24
therefore, x-5 = -1/24 , ⇒ x = 5-1/24 = 119/24
the values of x are 145/24 and 119/24
danerstiker47:
tell me the way of mark it as a best
Answered by
79
Take (x-6) = t
then (x-5) = (t+1)
(x-5)+(x-6) = 25/576
⇒(t+1)t = 25/576
⇒t² + t - = 0
t = and
or t = and
But t = (x-6)
case: 1
t = 1/24
⇒x-6 = 1/24
⇒x = 6 + 1/24
⇒x = (144+1)/24
⇒x = 145/24
case: 2
t = -25/24
⇒x-6 = -25/24
⇒x = 6 -25/24
⇒x = (144-25)/24
⇒x = 119/24
then (x-5) = (t+1)
(x-5)+(x-6) = 25/576
⇒(t+1)t = 25/576
⇒t² + t - = 0
t = and
or t = and
But t = (x-6)
case: 1
t = 1/24
⇒x-6 = 1/24
⇒x = 6 + 1/24
⇒x = (144+1)/24
⇒x = 145/24
case: 2
t = -25/24
⇒x-6 = -25/24
⇒x = 6 -25/24
⇒x = (144-25)/24
⇒x = 119/24
Similar questions