Math, asked by rs1674952, 1 year ago

1+3+5+......=n^2 prove by mathematical induction

Answers

Answered by rishabh1894041
2

Step-by-step explanation:

P(n)  = 1 + 3 + 5 + 7........ + (2n - 1) =  {n}^{2}  \\ When \:, n = 1 \\ L.H.S  \: = \:  \: 2 \times 1 - 1 = 1 \\ R.H.S  \:  \: = \:  \:  \:  \:  \:  \:  \: 1 \\ L.H.S = R.H.S \\ Hence \: P(1) \: is \: true. \\ Let \: P(k) \: be \: true \:  \\ P(k) = 1 + 3 + 5..........(2k - 1) =  {k}^{2} ...........(1) \\ To \: Prove \: P(k + 1) \: is \: true \: i.e. \\ 1 + 3 + 5 + ........ +( 2(k + 1) - 1) =  {(k + 1)}^{2}  \\ Adding \: (2k + 1) \: \: to \:  both \: sides \: of \: (1) \\ 1 + 3 + 5 + ........ + (2k -1 ) + (2k + 1) =  {k}^{2}  + 2k + 1 \\ hence \: P(k + 1) \: is \: true \:, whenever \: P(k)is \: true. \\  \\ By \: principle \: of \: mathematical \: induction \: it \: follows \: that \: P(n) \\ is \: true \: for \: all \: natural \: numbers \: n. \\  \\  \\ Hope \: it \: will \: help \: you.

Similar questions