(1-cos o)(1+cos o)(1+cot2 o)=1
Answers
Answered by
0
Answer:
Step-by-step explanation:
(1 - Cosθ)(1 + Cosθ)(1 + Cot²θ)
=> (1 - Cos²θ)(1 + Cot²θ) (∵ (a + b)(a -b) = a² - b²)
=> Sin²θ(1 + Cot²θ) (∵ 1 - Cos²θ = Sin²θ)
=> Sin²θ ( 1 + Cos²θ/Sin²θ)
//Take LCM of the items in the bracket
=> Sin²θ ( Sin²θ + Cos²θ/Sin²θ)
=> Sin²θ/Sin²θ ( ∵ Sin²θ + Cos²θ = 1)
=> 1
= R.H.S
Hence proved
Similar questions