1-cos2a/2+1-cos2b/2+1-cos2c/2=1-2sina/2 sinb/2 sinc/2
Answers
Answered by
0
A+B+C = pai
Dividing by 2 on both sides
C/2 = pi/2 - (A/2+B/2)
sin^2 A/2 +sin^2 B/2 + sin^2 C/2
=1- Cos^2 A/2 +sin^2 B/2 + sin^2 C/2
=1- [Cos^2 A/2 -sin^2 B/2] + sin^2 C/2
=1- Cos((A+B)/2 Cos (A-B)/2 + sin^2 C/2
=1- Cos(pi/2 -C/2) Cos (A-B)/2 + sin^2 C/2
=1- Sin C/2 Cos (A-B)/2 + sin^2 C/2
=1- Sin C/2 [Cos (A-B)/2 - sin C/2]
=1- Sin C/2 [Cos (A-B)/2 - sin [pi/2 - (A/2+B/2)]]
=1- Sin C/2 [Cos (A-B)/2 -Cos (A/2+B/2)]
=1- Sin C/2 [2Sin A/2 Sin B/2]
=1-2SinA/2 Sin B/2 Sin C/2
Dividing by 2 on both sides
C/2 = pi/2 - (A/2+B/2)
sin^2 A/2 +sin^2 B/2 + sin^2 C/2
=1- Cos^2 A/2 +sin^2 B/2 + sin^2 C/2
=1- [Cos^2 A/2 -sin^2 B/2] + sin^2 C/2
=1- Cos((A+B)/2 Cos (A-B)/2 + sin^2 C/2
=1- Cos(pi/2 -C/2) Cos (A-B)/2 + sin^2 C/2
=1- Sin C/2 Cos (A-B)/2 + sin^2 C/2
=1- Sin C/2 [Cos (A-B)/2 - sin C/2]
=1- Sin C/2 [Cos (A-B)/2 - sin [pi/2 - (A/2+B/2)]]
=1- Sin C/2 [Cos (A-B)/2 -Cos (A/2+B/2)]
=1- Sin C/2 [2Sin A/2 Sin B/2]
=1-2SinA/2 Sin B/2 Sin C/2
Answered by
0
yy8ptufuu?ru?r7?rl7r7lr6rh7r?7kro7rkr6k ..6Ke!6ei!6ei6.ri!6ri!6ier6!I!6ek6i.r.6ri
Similar questions