√(1+cosA/1-cosA)=(cosec A+cotA)
Answers
Answered by
1
Answer:
LHS
=√(1+cosA/1-cosA)
=√(1+cosA)^2/(1+cosA)(1-cosA)
=√(1+cosA)^2/(1-cos^2A)
=√(1+cosA)^2/sin^2A
=(1+cosA)/sinA
=1/sinA+cosA/sinA
=cosecA+cotA
=RHS
Answered by
1
Step-by-step explanation:
By Rationalisation
√(1+cosA/1-cosA) × √(1+cosA/1+cosA)
√(1+cosA)^2/ 1^2 - cos^2A. { a^2-b^2 = (a+b) (a-b) }
√ ( 1+cosA)^2 / sin^2A. { 1 - cos^2A = sin^2A}
By removing square root:-
1+cosA / sin A
It can be also written as
1/sinA + cosA/sinA
So,
cosec A + cot A {1/sinA = cosec A and cos A /sin A = cot A}
Hence Proved.
Similar questions