(1 + cot A - cosec A) (1 + tan A + sec A) = 2
Answers
Answered by
1
Answer:
Step-by-step explanation:
(1 + CotA - CosecA)(1 + TanA+SecA)
=> (1 + CosA/SinA - 1/SinA)(1 + SinA/CosA + 1/CosA)
=> (SinA+ CosA - 1 / SinA)(CosA + SinA + 1 / CosA)
=> 1/SinACosA [(SinA+ CosA - 1)((SinA+ CosA +1)]
=> 1/SinACosA[(SinA+CosA)² - 1²]
=> 1/SinACosA[Sin²A + Cos²A + 2SinACosA - 1]
=> 1/SinACosA[1 + 2SinACosA - 1]
=> 2SinACosA/SinAcosA
=>2
=> R.H.S
Hence proved.
Similar questions