Math, asked by almasqhamarSafa, 1 year ago

1. Find the sum of first 15 terms of the following APs:
(i) 11, 6, 1, – 4, –9 ...
(ii) 7, 12, 17, 22, 27 ..

Answers

Answered by akshatajay1410
15
(i) Given,
AP:- 11, 6, 1, -4, -9...
Here,
a¹= 11, d= -5, n= 15
Now,
S15= n/2{2a+(n-1)d}
= 15/2{ 2*11+(15-1)(-5)}
= 15/2{22-70}
= 15/2*(-48)
= 15*(-24)
= -360
(ii) Given,
AP:- 7, 12, 17, 22, 27...
Here,
a¹= 7, d= 5, n= 15
Now,
S15= n/2{2a+(n-1)d}
= 15/2{2*7+(15-1)5}
= 15/2{14+70}
= 15/2*84
= 15*42
=630

Hope this helps you!

akshatajay1410: mark as brainliest if you find it helpful
almasqhamarSafa: thanks
Answered by Anonymous
8

From now ,

lets name first term as a

lets call the common difference as d

the number of terms is n

and the Sum of n terms is S

________________________________________________

Important formula :

S = n / 2 [ 2 a + ( n - 1 ) d ]

=====================================================

Lets solve the questions :

1 )  11 , 6 , 1 ........................ for 15 terms

n = 15

a = 11

d = 6 - 11 = - 5

  or , = 1 - 6 = -5

S of 15 terms ==> S = n / 2 [ 2 a + ( n - 1 ) d ]

                      ==> S = 15 / 2 [ 2 × 11 + ( 15 - 1 ) ( - 5 ) ]

                      ==> S = 15 / 2 [ 22 + 14×-5 ]

                      ==> S = 15 / 2 [ 22 -70 ]

                      ==> S = 15 / 2 × [ - 48 ]

                      ==> S = 15 × -24

                      ==> S = -360

The sum of 15 terms is -360.

2 ) 7 , 12 , 17 , 22 .................... 15 terms

n = 15

d = 12 - 7 = 5

a = 7

sum of 15 terms ==> S = n / 2 [2 a + ( n - 1 ) d ]

                           ==> S = 15 / 2 × [ 14 + ( 15 - 1 ) × 5 ]

                           ==> S = 15 / 2 × [ 14 + 14×5 ]

                           ==> S = 15 / 2 × [ 14 + 70 ]

                           ==> S = 15 / 2 × 84

                           ==> S = 15 × 42

                           ==> S = 630

The sum of 15 terms is 630

Hope it helps you

Tell me if there's a mistake ^_^

___________________________________________________________________


almasqhamarSafa: thanks
Anonymous: welcome dear:-)
Similar questions