Math, asked by StarTbia, 1 year ago

1.Find the sum of the first 20 terms of the geometric series

Attachments:

Answers

Answered by JinKazama1
1
Final Answer:  \frac{15}{4} (1- \frac{1}{ 3^{20} } )

Steps:
1) Given GP is :
\frac{5}{2} + \frac{5}{6} + \frac{5}{18} +....20. terms
First term, a =  \frac{5}{2}
Common ratio, r =  \frac{1}{3}
No. Of terms, n= 20

2) S(n) = a \frac{1- r^{n} }{1-r}

S(20) = 5/2(1-(1/3)^20)/(1-1/3)

= 5* 3/2*2 ( 1- (1/3)^20)

= 15/4 (1-(1/3)^20)
Answered by rohitkumargupta
0
\large{\mathbf{HELLO\:\: DEAR,}}

\mathbf{GIVEN \:\:THAT:-}

\mathbf{\frac{5}{2} + \frac{5}{6} + \frac{5}{18} +...... 20terms}

where,

\mathbf{a = \frac{5}{2} , r = \frac{\frac{5}{6}}{\frac{5}{2}} = \frac{1}{3}}

\mathbf{S_n = \frac{a(1 - r^n)}{1 - r}}

\mathbf{S_{20} = \frac{\frac{5}{2}(1 - (\frac{1}{3})^{20}}{1 - \frac{1}{3}}}

\mathbf{S_{20} = \frac{\frac{5}{2}(\frac{3^{20} - 1}{3^{20}})}{\frac{(3 - 1)}{3}}}


\mathbf{\frac{15(3^{20} - 1)}{4*3^{20}}}


\mathbf{15/4* (1 - 1/3^{20})}


\mathbf{S_{20} = 15/4* (1 - 1/3^{20})}


 \large{\mathbf{\underline{I \: \: HOPE \: \: ITS \: \: HELP \: \: YOU \: \: DEAR, \: \: THANKS}}}

rohitkumargupta: :-)♥️
Similar questions