Math, asked by parthbhatti021, 16 hours ago

(1) If tan − tan B = and cot − cot = then prove that cot( − ) = 1 + 1 .

(2) Prove that cos 29+sin29 cos 29−sin29 = tan 74°.

(3) If cot = √3 and lies in fourth quadrant then find the value of : cos(− 2 ) sec(−) + cosec( 2 + ) sec( + ) + tan( 2 + ) cot( + ) + sin(− 2 ) cos(−) .

(4) Prove that sin( + ) sin( − ) = sin2 − sin2 . Hence prove that sin2 ( 8 + 2 ) − sin2 ( 8 − 2 ) = 1 √2 sin.

(5) Without using calculator, find the value of the following problems. (a) sin(300°) tan(330°) sec(420°) cot(135°) cos(210°) cosec(315°) (b) sec(220°) cos(580°) − tan(940°) cot(580°)

(6) Prove that sin 20° sin 40° sin 60° sin 80° = 3 16 .

(7) If tan = 1 2 ,tan = 1 5 ,tan = 1 8 then prove that + + = 4

(8) Prove that 3 = 3−tan3 1−3 tan2 .

(9) Prove that 3 − 3 = 2​

Answers

Answered by arunrajak
0

Step-by-step explanation:

(1) We have,

tanA−tanB=x and, cotB−cotA=y

Now,

cotB−cotA=y

tanB

1

tanA

1

=y

tanAtanB

tanA−tanB

=y

tanAtanB

x

=y

⇒tanAtanB=

y

x

Therefore,

cot(A−B)=

tan(A−B)

1

=

tanA−tanB

1+tanAtanB

=

x

1+

y

x

=

xy

x+y

=

x

1

+

y

1

(2)search-icon-header

Search for questions & chapters

search-icon-image

Class 11

>>Maths

>>Trigonometric Functions

>>Trigonometric Functions of Sum and Difference of Two angles

>>Prove that: sin^2A + sin^2B + sin^2C = 2

Question

Bookmark

Prove that: sin

2

A+sin

2

B+sin

2

C=2+2cosAcosBcosC.

Medium

Solution

verified

Verified by Toppr

On changing sin

2

A to 1−cos

2

A etc.

Proceeding directly as we need 2, we write sin

2

A=1−cos

2

A and

sin

2

B=1−cos

2

B

L.H.S.=2−cos

2

A−cos

2

B+sin

2

C

=2−(cos

2

A−sin

2

C)−cos

2

B

=2−cos(A+C)cos(A−C)−cos

2

B

=2+cosBcos(A−C)−cos

2

B

=2+cosB[cos(A−C)−cosB]

=2+cosB[cos(A−C)+cos(A+C)]

=2+cosB(2cosAcosC)

=2+2cosAcosBcosC.

Similar questions