1 - omega +omega square
Answers
Answered by
1
Step-by-step explanation:
The values of \omegaω and \omega^2ω
2
are - (1 + \omegaω ) or \omega^2=\dfrac{-1-i\sqrt{3}}{2}ω
2
=
2
−1−i
3
and \omega^3=1ω
3
=1 .
Explanation:
We have,
\omegaω and \omega^2ω
2
To find, the value of \omegaω and \omega^2ω
2
= ?
We know that,
1, \omegaω and \omega^2ω
2
cube root of unity.
∴ 1 + \omegaω + \omega^2ω
2
= 0
⇒ \omega^2ω
2
= - (1 + \omegaω )
\omega=\dfrac{-1+i\sqrt{3}}{2}ω=
2
−1+i
3
and \omega^2=\dfrac{-1-i\sqrt{3}}{2}ω
2
=
2
−1−i
3
\omega^3=1ω
3
=1
∴ \omega^2ω
2
= - (1 + \omegaω ) or \omega^2=\dfrac{-1-i\sqrt{3}}{2}ω
2
=
2
−1−i
3
and \omega^3=1ω
3
=1
Thus, the values of \omegaω and \omega^2ω
2
are - (1 + \omegaω ) or \omega^2=\dfrac{-1-i\sqrt{3}}{2}ω
2
=
2
−1−i
3
and \omega^3=1ω
3
=1 .
Similar questions