1. One of the exterior angles of a triangle is 112 and the corresponding interior opposite angles are
the ratio 3:4. Find the angles of the triangle.
Answers
Answer:
Your Answer is-
Step-by-step explanation:
Let a ∆ABC
Let the exterior angle C = 112 °
Now interior angle C= 68°
Sum of three angles of ∆ =180°_________(i)
Now , angle A: angle B= 3:4
So let angle A=3x
angle B= 4x
Now using (i)
3x + 4x + 68°= 180°
7x+ 68°= 180°
7x= 112°
x= 16
Now angles are A= 48°
B=64°
C=68°~
Your answer Is 68°, 48° 64°.
====================================
Given:-
- One of the exterior angle is 112°.
- And the corresponding opposite interior angles are in 3:4.
To Find:-
- The anglesof a triangle.
Concepts Used:-
Linear Pair:- The sum of angles made a straight angle is always equal to 180°.
Angle Sum Property:- Sum of all interior angles of a traingle are always equal to 180°.
Now,
Let the give triangle be ABC and exterior angle be PCA.
So <CAB:<BAC = 3:4. [Given]
Therefore let these angles be 3x and 4x respectively.
Also,
↦ <ACB + <PCA = 180°.
[By Linear pair]
↦ <ACB + 112° = 180°.
↦ <ACB = 180° - 112°.
↦ <ACB = 68°.
And,
↦ <ACB + <CAB + <BAC = 180°.
↦ 68° + 3x + 4x = 180°.
↦ 3x + 4x = 180° - 68°.
↦ 7x = 112°.
↦ x = 112°/7.
↦ x = 16°.
Therefore,
↦ 3x = 3 × 16° = 48°.
↦ 4x = 4 × 16° = 64°.
So the angles are 68°, 48°, 64°.
![](https://hi-static.z-dn.net/files/dd8/bd2d13141a1648271ec24adc039ebcf8.jpg)