1. Prove that [a+b, b +c, c+a)= 2 [a b c].
Answers
Answered by
1
Given,
Prove that [a+b, b +c, c+a)= 2 [a b c].
To find,
We have to prove that both sides are the same.
Solution,
To prove the above equation, we must follow simple mathematic steps.
We must prove that L.H.S=R.H.S
- First, we have to solve L.H.S
⇒[a+b,b+c,c+a]
⇒(a+b)×[(b+c)×(c+a)]
By multiplying the withing brackets,
⇒(a+b)×[(b×c)+(b×a)+(c×c)+(c×a)]
- Note- c×c= |c||c| sin 0 ñ =0( assuming)
⇒(a+b)×[(b×c)+(b×a)+0+(c×a)]
⇒a×(b×c)+b×(b×c)+a×(b×a)+b×(b×a)+a×(c×a)+b×(c×a)
⇒[a,b,c]+[b²,c]+[a,b]+[b²,a]+[a²,c]+[b,c,a]
- From the following,we can say that
⇒[b²,c]=c(b×b)
⇒b×b= |b||b| sin 0 ñ =0(assuming)
⇒c×0=0.
- Now we have to apply in all the cases,
⇒[b²,c]=0,[b²,a]=0,[a²,c]=0.
- Now, the new equation is
⇒[a,b,c]+0+0+0+0+[b,c,a]
⇒We can say that bca=abc
∴[a,b,c]+[a,b,c]=2[a,b,c]
Thus R.H.S proved.
Hence, the above equation is proved (L.H.S=R.H.S).
Similar questions