Accountancy, asked by sreekarreddy91, 1 month ago

1. Represent the following rational numbers on the number line.

\begin{gathered}\sf (a) \: \frac{ - 3}{4} \\ \\ \sf (b) \: \frac{31}{ - 6} \\ \\ \sf (c) \: \frac{ - 1}{2} \\ \\ \sf (d) \: \frac{3}{4} \end{gathered}


2. Write the following rational numbers in the standard form.

\begin{gathered}\sf \: (a) \: \frac{5}{15} \\ \\ \sf (b) \: \frac{ - 24}{40} \\ \\ \sf (c) \: \frac{33}{ - 77} \\ \\ \sf (d) \: \frac{ - 45}{ - 105} \end{gathered}


3. Compare the following rational numbers.

\begin{gathered}\sf (a) \: \frac{ - 9}{27} , \frac{6}{ - 18} \\ \\ \sf (b) \: \frac{-5}{7} , \frac{10}{-6} \\ \\ \sf (c) \: \frac{3}{-8} , \frac{-15}{40} \\ \\ \sf (d) \: \frac{-11}{7} , \frac{33}{21} \end{gathered}


4. Arrange the following rational numbers in the descending order.

\begin{gathered}\sf (a) \: \frac{2}{-3} , \frac{-4}{9} , \frac{-5}{12} , \frac{7}{-18} \\ \\ \sf (b) \: \frac{3}{-4} , \frac{-5}{12} , \frac{-7}{16} , \frac{9}{-24} \end{gathered}


5. Arrange the following rational numbers in the ascending order.

\begin{gathered}\sf (a) \: \frac{2}{5} , \frac{1}{3} , \frac{3}{4} , \frac{1}{6} \\ \\ \sf (b) \: \frac{5}{6} , \frac{7}{8} , \frac{11}{12} , \frac{3}{10}\end{gathered}

Answers

Answered by SachinGupta01
17

1. Represent the following rational numbers on the number line.

Solution : [See the attached images]

━━━━━━━━━━━━━━━━━━━━━━━━

2. Write the following rational numbers in the standard form.

Note : To write the standard form of any rational numbers, we have to divide both the numerator and denominator by their highest common factors.

\bf \: (a)  \: \:  \sf\dfrac{5}{15} \:  =  \dfrac{5 \div 5}{15  \div 5}

\sf \implies \: \:   \cancel\dfrac{5}{15} \:  =     \boxed{\bf \dfrac{1}{3} }

\bf \: (b)   \:  \sf\dfrac{ - 24}{40} \:  =  \dfrac{ - 24  \div 8}{40 \div 8}

\sf \implies \: \:   \cancel\dfrac{ - 24}{8} \:  =     \boxed{\bf \dfrac{ - 3}{5} }

\bf \: (c)   \:  \sf\dfrac{33}{ - 77} \:  =  \dfrac{ 33 \div 11}{ - 77 \div 11}

\sf \implies \: \:   \cancel\dfrac{ 33}{ - 77} \:  =   \dfrac{3}{ - 7}  =  \boxed{\bf \dfrac{ - 3}{7} }

\bf \: (d)    \:  \sf \dfrac{ - 45}{ - 105} \:  =  \dfrac{  - 45  \div 15}{ - 105 \div 15}

\sf \implies \: \:   \cancel\dfrac{  - 45}{ - 105} \:  =    \dfrac{ - 3}{ - 7}  = \boxed{\bf \dfrac{3}{7} }

━━━━━━━━━━━━━━━━━━━━━━━━

3. Compare the following rational numbers.

\bf (a) \:  \: \sf \dfrac{ - 9}{27}  \: , \:  \dfrac{6}{ - 18}

\sf \implies \: \:   \dfrac{ - 9}{27}  \: , \:  \dfrac{ - 6}{18}

\sf \implies \: \:    - 9 \times 18  \:  \:  \:  ,  \:  \: - 27 \times 6

\sf \implies \: \:    - 162  \:  \:  \:   =   \:  \: - 162

\sf \implies \: \:    \dfrac{ - 9}{27}  \:  \:  \:   =   \:  \: \dfrac{6}{ - 18}

Hence, both are equal.

\bf (b) \:  \:  \sf \: \dfrac{-5}{7}  \:  \:  \: ,  \:  \: \dfrac{10}{-6}

\sf \implies \: \:   \dfrac{ - 5}{7}  \: , \:  \dfrac{ -10}{6}

\sf \implies \: \:    - 5 \times 6 \:  \:  \:  ,  \:  \: 7 \times  - 10

\sf \implies \: \:    -30 \:  \:  \:   >  \:  \:  - 70

 \sf \: Hence,    \: \bf\dfrac{ - 5}{7}   \: \: \sf  is \:  greater \:  than  \:  \:  \bf\dfrac{10}{-6}

\bf (c) \:  \:  \sf \: \: \dfrac{3}{-8}  \:  \:  \: ,  \:  \dfrac{-15}{40}

\sf \implies \: \:   \dfrac{ - 3}{8}  \: , \:  \dfrac{ -15}{40}

\sf \implies \: \:    - 3 \times 40 \:  \:  \:  ,  \:  \: 8 \times  - 15

\sf \implies \: \:    - 120 \:  \:  \:   =  \:  \:  - 120

\sf \implies \: \:    \dfrac{3}{-8}  \:  \:  \:   =  \:  \: \dfrac{-15}{40}

Hence, both are equal.

\bf (d) \:  \:  \sf  \: \dfrac{-11}{7}  \:  \: ,  \: \dfrac{33}{21}

\sf \implies \: \:    - 11 \times 21 \:  \:  \:  ,  \:  \: 7 \times  33

\sf \implies \: \:    - 231 \:  \:  \:   <  \:  \: 231

\sf \implies \: \:    \dfrac{-11}{7}  \:  \:  \:   <  \:  \: \dfrac{33}{21}

 \sf \: Hence,  \:  \:   \bf\dfrac{33}{21}  \:  \: \sf  is \:  greater \:  than  \:   \: \bf\dfrac{-11}{7}

━━━━━━━━━━━━━━━━━━━━━━━━

4. Arrange the following rational numbers in the descending order.

Note : Descending order means largest to smallest. For this we need to make all rational numbers to like fractions and then we can arrange them by comparing their numerators.

 \bf(a) \:  \:   \: \sf\dfrac{2}{-3} , \:  \dfrac{-4}{9} ,  \: \dfrac{-5}{12} , \:  \dfrac{7}{-18}

 \longrightarrow \: \:  \sf\dfrac{ - 2}{3} , \:  \dfrac{-4}{9} ,  \: \dfrac{-5}{12} , \:  \dfrac{ - 7}{18}

 \bf \underline{Now},

\sf \implies \dfrac{ - 2}{3} = \dfrac{-2 \times 12}{3 \times 12} = \dfrac{-24}{36}

\sf \implies \dfrac{-4}{9} = \dfrac{-4 \times 4}{9 \times 4} = \dfrac{-16}{36}

\sf \implies \dfrac{-5}{12} = \dfrac{-5 \times 3}{12 \times 3} = \dfrac{-15}{36}

\sf \implies \dfrac{ - 7}{18} = \dfrac{-7 \times 2}{18 \times 2} = \dfrac{-14}{36}

 \bf  \underline{Answer} = \boxed{ \sf \dfrac{-7}{18} \:   > \: \dfrac{-5}{12} \:  >  \: \dfrac{-4}{9} \:   >  \: \dfrac{-2}{3}}

 \sf \: (b) \:  \:  \: \dfrac{3}{-4} , \:  \dfrac{-5}{12} ,  \: \dfrac{-7}{16} ,  \: \dfrac{9}{-24}

 \sf \longrightarrow \: \:  \dfrac{ - 3}{4} , \:  \dfrac{-5}{12} ,  \: \dfrac{-7}{16} ,  \: \dfrac{ - 9}{24}

 \bf \underline{Now},

\sf \implies \dfrac{ - 3}{4} = \dfrac{ -3 \times 24}{ 4 \times 24} = \dfrac{-72}{96}

\sf \implies \dfrac{-5}{12} = \dfrac{-5 \times 8}{ 12 \times 8} = \dfrac{-40}{96}

\sf \implies \dfrac{-7}{16} = \dfrac{-7 \times 6}{16 \times 6} = \dfrac{-42}{96}

\sf \implies \dfrac{-9}{24} = \dfrac{-9 \times 4}{24 \times 4} = \dfrac{-36}{96}

 \bf  \underline{Answer} = \boxed{ \sf \dfrac{-9}{4} \:   > \: \dfrac{-5}{12} \:  >  \: \dfrac{-7}{16} \:   >  \: \dfrac{-3}{4}}

━━━━━━━━━━━━━━━━━━━━━━━━

5. Arrange the following rational numbers in the ascending order.

Note : Ascending order means smallest to largest. For this we need to make all rational numbers to like fractions and then we can arrange them by comparing their numerators.

 \bf (a) \:\:  \:\sf \dfrac{2}{5} , \:\dfrac{1}{3} ,\: \dfrac{3}{4} ,\: \dfrac{1}{6}

Solution : [See the attached images]

\bf (b)\: \: \sf \dfrac{5}{6} , \:\dfrac{7}{8} ,\: \dfrac{11}{12},\: \dfrac{3}{10}

Solution : [See the attached images]

Attachments:
Similar questions