Math, asked by sonu200214, 1 year ago

1/secx-tanx-1/cosx= 1/cosx-1/secx+tanx

Answers

Answered by kinkyMkye
172
1/(secx-tanx) - 1/cosx
= secx + tanx -secx
= secx - (secx-tanx)
= 1/cosx - (sec²x-tan²x)/(secx+tanx)
=1/cosx - 1/(secx+tanx)

hence proved

sonu200214: thank you so much!!!
Answered by mysticd
104

Answer:

\frac{1}{secx-tanx}-\frac{1}{cosx}=\frac{1}{cosx}-\frac{1}{secx-tanx}

Step-by-step explanation:

LHS = \frac{1}{secx-tanx}-\frac{1}{cosx}

=\frac{secx+tanx}{(secx-tanx)(secx+tanx)}-secx

= \frac{secx+tanx}{sec^{2}x-tan^{2}x}-secx

=secx+tanx-secx

/* Since , sec²x - tan²x = 1 */

=secx -(secx-tanx)

=secx-\frac{(secx-tanx)(secx+tanx)}{secx-tanx}

=secx - \frac{sec^{2}x-tan^{2}x}{(secx-tanx}

=\frac{1}{cosx}-\frac{1}{secx-tanx}

= $RHS$

Therefore,

\frac{1}{secx-tanx}-\frac{1}{cosx}=\frac{1}{cosx}-\frac{1}{secx-tanx}

••••

Similar questions