Math, asked by rekhabhujabali, 1 year ago

1 - sin squared theta divided by 1 + cos theta is equal to​

Answers

Answered by kittusrn
8

Answer:

1-costheta

Step-by-step explanation:

sin2theta/1+costheta

(1-cos2theta)/1+costheta

(1+costheta)(1-costheta)/1+costheta

1-costheta

Answered by ashishks1912
26

The  value  of  the  given expression  1-\frac{\sin^2\theta}{1+\cos\theta} is \cos\theta

Therefore  1-\frac{\sin^2\theta}{1+\cos\theta}=\cos\theta

Step-by-step explanation:

Given expression is 1-\frac{\sin^2\theta}{1+\cos\theta}

To find the value of the given expression :

  • 1-\frac{\sin^2\theta}{1+\cos\theta}
  • =\frac{1(1+\cos\theta)-\sin^2\theta}{1+\cos\theta} ( here taking LCM 1+\cos\theta )
  • =\frac{1+\cos\theta-sin^2\theta}{1+\cos\theta}
  • =\frac{\cos\theta+(1-sin^2\theta)}{1+\cos\theta}
  • =\frac{\cos\theta+(\cos^2\theta)}{1+\cos\theta} ( here by using the identity \cos^2\theta=1-sin^2\theta)
  • =\frac{\cos\theta(1+\cos\theta)}{1+\cos\theta}
  • =\cos\theta ( here 1+\cos\theta getting cancelled )
  • Therefore  1-\frac{\sin^2\theta}{1+\cos\theta}=\cos\theta

The  value of  the  given  expression  1-\frac{\sin^2\theta}{1+\cos\theta}  is  \cos\theta

Similar questions