Math, asked by pgracevolau1732, 1 year ago

1∫ tan⁻¹x dx ,Evaluate it.0

Answers

Answered by soni123472
1

Answer:

plzz give me brainliest ans and thanks and follow me

Attachments:
Answered by sonuojha211
1

Answer:

The answer is:

\dfrac{\pi}{4} -\dfrac{1}{2}log(2).

Step-by-step explanation:

\displaystyle\int _0^1tan^{-1}x\,dx

Here we are applying integration by parts formula:

\displaystyle\int (uv)dx=u\displaystyle\int v\,dx-\displaystyle\int[\dfrac{d}{dx}(u)\displaystyle\int v\,dx]dx

Therefore:

=tan^{-1}x\displaystyle\int _0^1dx-\displaystyle\int _0^1[\dfrac{d}{dx}(tan^{-1}x)\displaystyle\int _0^1dx]dx

Integration of:

tan^{-1}x=\dfrac{1}{1+x^2}.

=[tan^{-1}x\cdot x]_0^1-\displaystyle\int _0^1[\dfrac{1}{1+x^2}\cdot x]dx\\

Substituting:

1+x^2=z\\2x\,dx=dz\\x\,dx=\dfrac{dz}{2}

Substituting the value of limits:

Lower limit:

When x=0

z=1+0\\z=1

Upper limit:

When x=1

z=1+1\\z=2

Hence integrating by substituting the values:

=[x\,tan^{-1}x]_0^1-\displaystyle\int _1^2[\dfrac{1}{z}\cdot \dfrac{dz}{2}]\\=[x\,tan^{-1}x]_0^1-\dfrac{1}{2}[log(z)]_1^2\\=[1tan^{-1}(1)-0]-\dfrac{1}{2}[log(2)-log(1)]\\=\dfrac{\pi}{4}-\dfrac{1}{2}log(2)

Similar questions