Math, asked by ankitsinghabd6710, 1 year ago

π/2∫ cosx/(1+sinx)(2+sinx)(3+sinx) dx ,Evaluate it.0

Answers

Answered by laukik12
0

Answer:

ecostheta + esintneta

Answered by sk940178
0

Answer:

\frac{4\sqrt{2} }{3\sqrt{3} }

Step-by-step explanation:

We have to find the value of,

\int\limits^\frac{\pi }{2} _0 {\frac{Cosx}{(1+Sinx)(2+Sinx)(3+Sinx)} } \, dx.

Let us first calculate the indefinite integral. Then we will put the limits.

\frac{Cosx}{(1+Sinx)(2+Sinx)(3+Sinx)}dx

Assume that Sinx = z, ⇒Cosx.dx=dz. So, the above integration can be written as,

\frac{dz}{(1+z)(2+z)(3+z)}

=∫\frac{(2+z)-(1+z)}{(1+z)(2+z)(3+z)}dz

=∫\frac{dz}{(1+z)(3+z)}-∫\frac{dz}{(2+z)(3+z)}

= \frac{1}{2} \int\ {\frac{(3+z)-(1+z)}{(3+z)(1+z)} } \, dz-\int\ {\frac{(3+z)-(2+z)}{(3+z)(2+z)} } \, dz

= \frac{1}{2}\int\ {\frac{1}{1+z} } \, dz-\frac{1}{2}\int\ {\frac{1}{3+z} } \, dz-\int\ {\frac{1}{2+z} } \, dz+\int\ {\frac{1}{3+z} } \, dz

= \frac{1}{2}\int\ {\frac{1}{1+z} } \, dz-\int\ {\frac{1}{2+z} } \, dz+\frac{1}{2}\int\ {\frac{1}{3+z} } \, dz

=\frac{1}{2}㏑[1+z]-㏑[2+z]+\frac{1}{2}㏑[3+z] +c {Where C is the integration constant.}

= ㏑\frac{\sqrt{(1+z)(3+z)}}{2+z} +c

Now putting z=Sinx, we will get,

=㏑\frac{\sqrt{(1+Sinx)(3+Sinx)}}{2+Sinx} +c

So, putting limits x=0 to x=π/2, we will get

=㏑\frac{\sqrt{(1+1)(3+1)} }{2+1}-㏑\frac{\sqrt{(1+0)(3+0)} }{2+0}

=㏑\frac{2\sqrt{2} }{3}-㏑\frac{\sqrt{3} }{2}

=\frac{4\sqrt{2} }{3\sqrt{3} }

(Answer)

Similar questions