Math, asked by badecool6218, 1 year ago

1/2∫ xsin⁻¹ x/√1-x² dx ,Evaluate it.0

Answers

Answered by rishu6845
1

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by bestwriters
0

\bold{\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\frac{1}{2}-\left(\frac{\pi}{6}\right) \sqrt{\frac{3}{4}}}

Given:

\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x

Step-by-step explanation:

Let us consider the given integral as ‘I’.

I=\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x

This is solved by substitution method.

Let t=\sin ^{-1}(x)

\frac{d t}{d x}=\frac{1}{\sqrt{1-x^{2}}}

\mathrm{dt}=\frac{d x}{\sqrt{1-x^{2}}}

Now, the integral becomes,

I =\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int \sin t \times t \times \frac{d x}{\sqrt{1-x^{2}}}

The above equation is in trigonometric algebraic form.

\left[\begin{array}{c}{\left.\int f(x) g(x) d x=f(x) \int g(x) d x=\int\left(f^{\prime}(x) \int g(x) d x\right) d x\right} \\{\Rightarrow f(x)=t} \\{\Rightarrow g(x)=\sin t}\end{array}\right]

I=t \int \sin t d t-\int \frac{d(t)}{d t} \int \sin t d t d t

I =\mathrm{t}(-\cos \mathrm{t})-\int(-\cos t) d t

I =-t \cos t+\int \cos t d t

I =-t \cos t+\sin t

Now,

t=\sin ^{-1}(x)

\sin t=x

\sin t=x

\sin ^{2} t=x^{2}

1-\cos ^{2} t=x^{2}

\cos ^{2} t=1-x^{2}

\cos t=\sqrt{1-x^{2}}

On substituting the values, we get,

I=\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\left[x-\sqrt{1-x^{2}} \sin ^{-1} x\right]_{0}^{1 / 2}

I=\frac{1}{2}-\sqrt{1-\frac{1}{4}}\left(\sin ^{-1} \frac{1}{2}\right)-0-\sqrt{1-0}\left(\sin ^{-1} 0\right)

I=\frac{1}{2}-\sqrt{\frac{3}{4}}\left(\frac{\pi}{6}\right)-0

\therefore I=\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\frac{1}{2}-\left(\frac{\pi}{6}\right) \sqrt{\frac{3}{4}}

Similar questions