Math, asked by DurgaNandan3100, 1 year ago

π/4∫ dx/2+3cos²x ,Evaluate it.0

Answers

Answered by soni123472
0

Answer:

plzzz give me brainliest ans and thanks plzzz

Attachments:
Answered by sk940178
0

Answer:

\frac{1}{\sqrt{10}}.tan¬1(\frac{\sqrt{2} }{\sqrt{5} })

Step-by-step explanation:

We have to evaluate, \int\limits^\frac{\pi }{4} _0 {\frac{1}{2+3Cos^{2}x } } \, dx.

Let us calculate the indefinite integral of the function first. Then we will put the limits to get the final answer.

\frac{dx}{2+3Cos^{2}x }

=∫\frac{Sec^{2}x.dx }{2Sec^{2}x+3 }

=∫\frac{d(tanx)}{2(1+tan^{2}x)+3 }

=∫\frac{d(tanx)}{2tan^{2}x+5 }

=\frac{1}{2}\frac{d(tanx)}{tan^{2}x+\frac{5}{2}}

=\frac{1}{2}.\frac{\sqrt{2} }{\sqrt{5}}..tan¬1(\frac{\sqrt{2}tanx }{\sqrt{5} })+ c {Where c is an integration constant)

[Here, we have applied the formula of integration:

\frac{dx}{x^{2}+a^{2}}=\frac{1}{a}tan¬1(\frac{x}{a})]

Now, we will put the limits from x=0 to x=π/4 in this indefinite integral.

Hence,

\int\limits^\frac{\pi }{4} _0 {\frac{1}{2+3Cos^{2}x } } \, dx

=\frac{1}{\sqrt{10}}.tan¬1(\frac{\sqrt{2}.1 }{\sqrt{5} })-\frac{1}{\sqrt{10}}.tan¬1(0)

=\frac{1}{\sqrt{10}}.tan¬1(\frac{\sqrt{2} }{\sqrt{5} })

(Answer)

Similar questions