Math, asked by garimaupadhyay1032, 1 year ago

1-tan^2θ/ cot^2θ -1 = tan^2θ

Answers

Answered by MarkAsBrainliest
0
Answer :

L.H.S. = ( 1 - tan²θ ) / ( cot²θ - 1 )

= ( 1 - tan²θ ) / { ( 1 / tan²θ ) - 1 }

= ( 1 - tan²θ ) / { ( 1 - tan²θ ) / tan²θ }

= tan²θ

= R.H.S.

Hence, proved.

#MarkAsBrainliest
Answered by Anonymous
13

SOLUTION:-

We have,

 \frac{1 -  {tan}^{2} \theta }{ {cot}^{2} \theta - 1 }  = tan {}^{2}  \theta

Take L.H.S

 =  > ( \frac{1 -  {tan}\theta }{1 -  {cot} \theta} ) {}^{2}  \\  \\  =  > ( \frac{1 -  \frac{sin \theta}{cos \theta} }{1 -  \frac{cos \theta}{sin \theta} } ) {}^{2}  \\   \\   =  > ( \frac{ \frac{cos \theta - sin \theta}{cos \theta} }{ \frac{sin \theta - cos \theta}{sin \theta} } ) {}^{2}  \\  \\  =  > ( \frac{ \frac{ - (sin \theta - cos \theta)}{cos \theta} }{ \frac{sin \theta - cos \theta}{sin \theta} } ) {}^{2}  \\  \\  =  > ( \frac{ - (sin \theta - cos \theta)}{sin \theta - cos \theta}  \times  \frac{sin \theta}{cos \theta} ) {}^{2}  \\  \\  =  > ( -  \frac{sin \theta}{cos \theta} ) {}^{2}  \\  \\  =  >  \frac{ {sin}^{2} \theta }{ {cos}^{2} \theta }   \\  \\  =  >  {tan}^{2}  \theta  \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S]

[Proved].

Thank you

Similar questions